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About eGon-data


Project background

egon-data provides a transparent and reproducible open data-based data processing pipeline for generating data models suitable for energy system modeling. The data is customized for the requirements of the research project eGo_n. The research project aims to develop tools for open and cross-sectoral planning of transmission and distribution grids. For further information please visit the eGo_n project website [https://ego-n.org/].
egon-data is a further development of the Data processing [https://github.com/openego/data_processing] developed in the former research project open_eGo [https://openegoproject.wordpress.com/]. It aims to extend the data models as well as improve the replicability and manageability of the data preparation and processing.
The resulting data set serves as an input for the optimization tools eTraGo [https://github.com/openego/eTraGo], ding0 [https://github.com/openego/ding0] and eDisGo [https://github.com/openego/eDisGo] and delivers, for example, data on grid topologies, demands/demand curves and generation capacities in a high spatial resolution. The outputs of egon-data are published under open-source and open-data licenses.



Objectives of the project

Driven by the expansion of renewable generation capacity and the progressing electrification of other energy sectors, the electrical grid increasingly faces new challenges: fluctuating supply of renewable energy and simultaneously a changing demand pattern caused by sector coupling. However, the integration of non-electric sectors such as gas, heat, and e-mobility enables more flexibility options. The eGo_n project aims to investigate the effects of sector coupling on the electrical grid and the benefits of new flexibility options. This requires the creation of a spatially and temporally highly resolved database for all sectors considered.



Project consortium and funding

The following universities and research institutes were involved in the creation of eGon-data:


	University of Applied Sciences Flensburg


	Reiner Lemoine Institut


	Otto von Guericke University Magdeburg


	DLR Institute of Networked Energy Systems


	Europa-Universität Flensburg




The eGo_n project (FKZ: 03EI1002) is supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK) on the basis of a decision by the German Bundestag.

[image: Logos of project partners]


eGon-data as one element of the eGo-Toolchain

In the eGo_n project different tools were developed, which are in exchange with each other and have to serve the respective requirements on data scope, resolution, and format. The results of the data model creation have to be especially adapted to the requirements of the tools eTraGo and eDisGo for power grid optimization on different grid levels.
A PostgreSQL database serves as an interface between the data model creation and the optimization tools.
The figure below visualizes the interdependencies between the different tools.

[image: eGon-data tool chain]

Modeling concept and scenarios

eGon-data provides a data model suitable for calculations and optimizations with the tools eTraGo, eDisGo and eGo and therefore aims to satisfy all requirements regarding the scope and temporal as well as spatial granularity of the resulting data model.


System boundaries and general assumptions


	Sectors


	Focus on Germany


	Neighbouring countries (which ones and why)


	Spatial resolution / aggregartion levels


	Temporal resolution incl. assumptions on weather year




The following image visualizes the different components considered in scenario eGon2035.

[image: Components of the data models]


Scenarios

eGon-data aims to create different scenarios, which differ in terms of RE penetration or the availability of flexibility options. Currently, the following scenarios are available or in progress.


	eGon2035 Mid-termin scenario based on assumptions from the German network expansion plan ‘scenario C2035’, version 2021 and TYNDP


	eGon2035_lowflex Mid-termin scenario similar to ‘eGon2035’, but with a limited availability of flexibility options


	eGon100RE Long-term scenario with a 100% RE penetration, based on optimization results with PyPSA-Eur-Sec and additional data inputs (work-in-progress)





Installed capacities of German power park in scenario eGon2035 and eGon2035_lowflex





	carrier

	Installed capacities





	gas

	46.7 GW



	oil

	1.3 GW



	pumped hydro

	10.2 GW



	wind onshore

	90.9 GW



	wind offshore

	34.0 GW



	solar

	120.1 GW



	biomass

	8.7 GW



	others

	5.4 GW







German energy demands in scenarios eGon2035 and eGon2035_lowflex





	Demand sector

	Energy demand





	MIT transport

	41.4 TWh el



	central heat

	68.9 TWh th



	rural heat

	423.2 TWh th



	electricity

	498.1 TWh el



	Methane industry

	196.0 TWh CH4



	Hydrogen industry

	16.1 TWh H2



	Hydrogen transport

	26.5 TWh H2











          

      

      

    

  

    
      
          
            
  
Workflow


Workflow management



Execution

In principle egon-data is not limited to the use of a specific programming language as the workflow integrates different scripts using Apache Airflow, but Python and SQL are widely used within the process. Apache Airflow organizes the order of execution of processing steps through so-called operators. In the default case the SQL processing is executed on a containerized local PostgreSQL database using Docker. For further information on Docker and its installation please refer to their documentation [https://docs.docker.com/]. Connection information of our local Docker database are defined in the corresponding docker-compose.yml [https://github.com/openego/eGon-data/blob/dev/src/egon/data/airflow/docker-compose.yml]

The egon-data workflow is composed of four different sections: database setup, data import, data processing and data export to the OpenEnergy Platform. Each section consists of different tasks, which are managed by Apache Airflow and correspond with the local database.
Only final datasets which function as an input for the optimization tools or selected interim results are uploaded to the Open Energy Platform [https://openenergy-platform.org/].
The data processing in egon-data needs to be performed locally as calculations on the Open Energy Platform are prohibited.
More information on how to run the workflow can be found in the getting started section [https://egon-data.readthedocs.io/en/latest/getting_started.html#run-the-workflow] of our documentation.


[image: _images/DP_Workflow_15012021.svg]


Versioning


Warning

Please note, the following is not implemented yet, but we are working on it.



Source code and data are versioned independendly from each other. Every data table uploaded to the Open Energy Platform contains a column ‘version’ which is used to identify different versions of the same data set. The version number is maintained for every table separately. This is a major difference to the versioning concept applied in the former data processing where all (interim) results were versioned under the same version number.





          

      

      

    

  

    
      
          
            
  
Getting Started


Pre-requisites

In addition to the installation of Python packages, some non-Python
packages are required too. Right now these are:


	Docker [https://docs.docker.com/get-started/]: Docker is used to provide
a PostgreSQL database (in the default case).

Docker provides extensive installation instruction. Best you consult their
docs [https://docs.docker.com/get-docker/] and choose the appropriate
install method for your OS.

Docker is not required if you use a local PostreSQL installation.



	The psql executable. On Ubuntu, this is provided by the
postgresql-client-common package.


	Header files for the libpq5 PostgreSQL library. These are necessary
to build the psycopg2 package from source and are provided by the
libpq-dev package on Ubuntu.


	osm2pgsql [https://osm2pgsql.org/]
On recent Ubuntu version you can install it via
sudo apt install osm2pgsql.


	postgis [https://postgis.net/]
On recent Ubuntu version you can install it via
sudo apt install postgis.


	osmTGmod resp. osmosis needs java [https://www.java.com/].
On recent Ubuntu version you can install it via
sudo apt install default-jre and
sudo apt install default-jdk.


	conda is needed for the subprocess of running pypsa-eur-sec.
For the installation of miniconda, check out the
conda installation guide [https://docs.conda.io/projects/conda/en/latest/user-guide/install/].


	pypsa-eur-sec resp. Fiona needs the additional library libtbb2.
On recent Ubuntu version you can install it via
sudo apt install libtbb2


	gdal [https://gdal.org/]
On recent Ubuntu version you can install it via
sudo apt install gdal-bin.


	curl is required.
You can install it via sudo apt install curl.


	To download ERA5 weather data you need to register at the CDS
registration page and install the CDS API key as described
here [https://cds.climate.copernicus.eu/api-how-to]
You also have to agree on the terms of use [https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products]


	Make sure you have enough free disk space (~350 GB) in your working
directory.






Installation

Since no release is available on PyPI and installations are probably
used for development, cloning it via

git clone git@github.com:openego/eGon-data.git





and installing it in editable mode via

pip install -e eGon-data/





are recommended.

In order to keep the package installation isolated, we recommend
installing the package in a dedicated virtual environment. There’s both,
an external tool [https://virtualenv.pypa.io/en/latest/] and a builtin module [https://docs.python.org/3/tutorial/venv.html#virtual-environments-and-packages] which help in doing so. I
also highly recommend spending the time to set up virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/index.html]
to manage your virtual environments if you start having to keep multiple
ones around.

If you run into any problems during the installation of egon.data,
try looking into the list of known installation problems [https://eGon-data.readthedocs.io/en/latest/troubleshooting.html#installation-errors] we have
collected. Maybe we already know of your problem and also of a solution
to it.



Run the workflow

The egon.data package installs a command line application
called egon-data with which you can control the workflow so once
the installation is successful, you can explore the command line
interface starting with egon-data --help.

The most useful subcommand is probably egon-data serve. After
running this command, you can open your browser and point it to
localhost:8080, after which you will see the web interface of Apache
Airflow [https://airflow.apache.org/docs/apache-airflow/stable/ui.html#ui-screenshots] with which you can control the \(eGo^n\) data processing
pipeline.

If running egon-data results in an error, we also have collected
a list of known runtime errors [https://eGon-data.readthedocs.io/en/latest/troubleshooting.html#runtime-errors], which can consult in search of a
solution.

To run the workflow from the CLI without using egon-data serve you can use

egon-data airflow scheduler
egon-data airflow dags trigger egon-data-processing-pipeline





For further details how to use the CLI see Apache Airflow CLI Reference [https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html].


Warning

A complete run of the workflow might require much computing power and
can’t be run on laptop. Use the test mode for
experimenting.




Warning

A complete run of the workflow needs loads of free disk space (~350 GB) to
store (temporary) files.




Test mode

The workflow can be tested on a smaller subset of data on example of the
federal state of Schleswig-Holstein.
Data is reduced during execution of the workflow to represent only this area.


Warning

Right now, the test mode is set in egon.data/airflow/pipeline.py.








          

      

      

    

  

    
      
          
            
  
Troubleshooting

Having trouble installing or running eGon-data? Here’s a list of
known issues including a solution.


Installation Errors

These are some errors you might encounter while trying to install
egon.data.


importlib_metadata.PackageNotFoundError: No package metadata ...

It might happen that you have installed importlib-metadata=3.1.0 for some
reason which will lead to this error. Make sure you have
importlib-metadata>=3.1.1 installed. For more information read the
discussion in issue #60 [https://github.com/openego/eGon-data/issues/60].




Runtime Errors

These are some of the errors you might encounter while trying to run
egon-data.


ERROR: Couldn't connect to Docker daemon ...

To verify, please execute docker-compose -f <(echo {"service":
{"image": "hellow-world"}}) ps and you should see something like

ERROR: Couldn't connect to Docker daemon at http+docker://localunixsocket - is it running?

If it's at a non-standard location, specify the URL with the DOCKER_HOST environment
variable.





This can have at least two possible reasons. First, the docker daemon
might not be running. On Linux Systems, you can check for this by
running ps -e | grep dockerd. If this generates no output, you
have to start the docker daemon, which you can do via sudo
systemctl start docker.service on recent Ubuntu systems.

Second, your current user might not be a member of the docker group. On
Linux, you can check this by running groups $(whoami). If the
output does not contain the word docker, you have to add your current
user to the docker group. You can find more information on how to do
this in the docker documentation [https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user]. Read the initial discussion [https://github.com/openego/eGon-data/issues/33] for more context.



[ERROR] Connection in use ...

This error might arise when running egon-data serve making it
shut down early with ERROR - Shutting down webserver. The reason
for this is that the local webserver from a previous egon-data
serve run didn’t shut down properly and is still running. This can be
fixed by running ps -eo pid,command  | grep "gunicorn: master" |
grep -v grep which should lead to output like NUMBER gunicorn:
master [airflow-webserver] where NUMBER is a varying number.
Once you got this, run kill -s INT NUMBER, substituting
NUMBER with what you got previously. After this,
egon-data serve should run without errors again.



[ERROR] Cannot create container for service egon-data-local-database ...

During building the docker container for the Postgres database, you might
encounter an error like

ERROR: for egon-data-local-database  Cannot create container for service
egon-data-local-database: Conflict. The container name
"/egon-data-local-database" is already in use by container
"1ff9aadef273a76a0acbf850c0da794d0fb28a30e9840f818cca1a47d1181b00".
You have to remove (or rename) that container to be able to reuse that name.





If you’re ok with deleting the data, stop and remove the container by

docker stop egon-data-local-database
docker rm -v egon-data-local-database





The container and its data can be kept by renaming the docker container.

docker rename egon-data-local-database NEW_CONTAINER_NAME







Working with multiple instances of egon-data

To make sure parallel installations of egon-data are not conflicting each other
users have to set different values for the following options in the configuration:

--airflow-port
--compose-project-name
--database-port
--docker-container-name








Other import or incompatible package version errors

If you get an ImportError when trying to run egon-data,
or the installation complains with something like

first-package a.b.c requires second-package>=q.r.r, but you'll have
second-package x.y.z which is incompatible.





you might have run into a problem of earlier pip versions. Either
upgrade to a pip version >=20.3 and reinstall egon.data, or
reinstall the package via pip install -U --use-feature=2020-resolver.
The -U flag is important to actually force a reinstall. For more
information read the discussions in issues #36 [https://github.com/openego/eGon-data/issues/36] and
#37 [https://github.com/openego/eGon-data/issues/37].





          

      

      

    

  

    
      
          
            
  
Data

The description of the methods, input data and results of the eGon-data pipeline is given in the following section.
References to datasets and functions are integrated if more detailed information is required.


Main input data and their processing

All methods in the eGon-data workflow rely on public and freely available data from different external sources. The most important data sources
and their processing within the eGon-data pipeline are described here.


Data bundle

The data bundle is published on
zenodo [https://sandbox.zenodo.org/record/1167119]. It contains several data
sets, which serve as a basis for egon-data:


	Climate zones in Germany


	Data on eMobility individual trips of electric vehicles


	Spatial distribution of deep geothermal potentials in Germany


	Annual profiles in hourly resolution of electricity demand of private households


	Sample heat time series including hot water and space heating for single- and multi-familiy houses


	Hydrogen storage potentials in salt structures


	Information about industrial sites with DSM-potential in Germany


	Data extracted from the German grid development plan - power


	Parameters for the classification of gas pipelines


	Preliminary results from scenario generator pypsa-eur-sec


	German regions suitable to model dynamic line rating


	Eligible areas for wind turbines and ground-mounted PV systems


	Definitions of industrial and commercial branches


	Zensus data on households


	Geocoding of all unique combinations of ZIP code and municipality within the Marktstammdatenregister




For further description of the data including licenses and references please refer to the Zenodo repository.



Marktstammdatenregister

The Marktstammdatenregister [https://www.marktstammdatenregister.de/MaStR] (MaStR)
is the register for the German electricity and gas
market holding, among others, data on electricity and gas generation plants. In eGon-data
it is used for status quo data on PV plants, wind turbines, biomass, hydro power plants,
combustion power plants, nuclear power plants, geo- and solarthermal power plants, and storage units.
The data are obtained from zenodo, where raw MaStR data, downloaded with the tool
open-MaStR [https://github.com/OpenEnergyPlatform/open-MaStR] using the MaStR webservice,
is provided. It contains all data from the MaStR, including possible duplicates.
Currently, two versions are used:


	2021-05-03 [https://sandbox.zenodo.org/record/1167119]


	2022-11-17 [https://sandbox.zenodo.org/record/1132839]




The download is implemented in MastrData.



OpenStreetMap

OpenStreetMap [https://www.openstreetmap.org/] (OSM) is a free, editable map of the whole
world that is being built by volunteers and released with an open-content license.
In eGon-data it is, among others, used to obtain information on land use as well as
locations of buildings and amenities to spatially dissolve energy demand.
The OSM data is downloaded from the Geofabrik [https://www.geofabrik.de/] download
server, which holds extracts from the OpenStreetMap. Afterwards, they are imported
to the database using osm2pgsql with a custom style file. The implementation of this
can be found in OpenStreetMap.

In the OpenStreetMap
dataset, the OSM data is filtered, processed and enriched with other data. This is
described in the following subsections.


Amenity data

The data on amenities is used to disaggregate CTS demand data. It is filtered from the
raw OSM data using tags listed in script osm_amenities_shops_preprocessing.sql, e.g.
shops and restaurants. The filtered data is written to database table
openstreetmap.osm_amenities_shops_filtered.



Building data

The data on buildings is required by several tasks in the
pipeline, such as the disaggregation of household demand profiles or PV home
systems to buildings, as well as the DIstribution Network Generat0r ding0 [https://github.com/openego/ding0] (see also Medium and low-voltage grids).

The data processing steps are:


	Extract buildings and filter using relevant tags, e.g. residential and
commercial, see script osm_buildings_filter.sql for the full list of tags.
Resulting tables:


	All buildings: openstreetmap.osm_buildings


	Filtered buildings: openstreetmap.osm_buildings_filtered


	Residential buildings: openstreetmap.osm_buildings_residential






	Create a mapping table for building’s OSM IDs to the Zensus cells the
building’s centroid is located in.
Resulting tables:


	boundaries.egon_map_zensus_buildings_filtered (filtered)


	boundaries.egon_map_zensus_buildings_residential (residential only)






	Enrich each building by number of apartments from Zensus table
society.egon_destatis_zensus_apartment_building_population_per_ha
by splitting up the cell’s sum equally to the buildings. In some cases, a
Zensus cell does not contain buildings but there is a building nearby which
the no. of apartments is to be allocated to. To make sure apartments are
allocated to at least one building, a radius of 77m is used to catch building
geometries.


	Split filtered buildings into 3 datasets using the amenities’ locations:
temporary tables are created in script osm_buildings_temp_tables.sql, the
final tables in osm_buildings_amentities_results.sql.
Resulting tables:


	Buildings w/ amenities: openstreetmap.osm_buildings_with_amenities


	Buildings w/o amenities: openstreetmap.osm_buildings_without_amenities


	Amenities not allocated to buildings:
openstreetmap.osm_amenities_not_in_buildings








As there are discrepancies between the Census data [Census] and OSM building data when both
datasets are used to generate electricity demand profiles of households, synthetic buildings
are added in Census cells with households but without buildings. This is done as part
of the Demand_Building_Assignment
dataset in function generate_synthetic_buildings.
The synthetic building data are written to table openstreetmap.osm_buildings_synthetic.
The same is done in case of CTS electricity demand profiles. Here, electricity demand is
disaggregated to Census cells according to heat demand information from the
Pan European Thermal Atlas [Peta]. In case there are Census cells with electricity demand
assigned but no building or amenity data, synthetic buildings are added.
This is done as part
of the CtsDemandBuildings
dataset in function create_synthetic_buildings.
The synthetic building data are again written to table openstreetmap.osm_buildings_synthetic.



Street data

The data on streets is used in the DIstribution Network Generat0r ding0 [https://github.com/openego/ding0], e.g. for the routing of the grid.
It is filtered from the
raw OSM data using tags listed in script osm_ways_preprocessing.sql, e.g.
highway=secondary. Additionally, each way is split into its line segments and their
lengths is retained. The filtered streets data is written to database table
openstreetmap.osm_ways_preprocessed and the filtered streets with segments
to table openstreetmap.osm_ways_with_segments.





Grid models

Power grid models of different voltage levels form a central part of the eGon data model, which is required for cross-grid-level optimization.
In addition, sector coupling necessitates the representation of the gas grid infrastructure, which is also described in this section.


Electricity grid


High and extra-high voltage grids

The model of the German extra-high (eHV) and high voltage (HV) grid is based
on data retrieved from OpenStreetMap (OSM) (status January 2021) [OSM] and additional
parameters for standard transmission lines from [Brakelmann2004]. To gather all
required information, such as line topology, voltage level, substation locations,
and electrical parameters, to create a calculable power system model, the *osmTGmod*
tool [https://github.com/openego/osmTGmod] was used. The corresponding dataset
Osmtgmod executes osmTGmod
and writes the resulting data to the database.

The resulting grid model includes the voltage levels 380, 220 and 110 kV and
all substations interconnecting the different grid levels. Information about
border crossing lines are as well extracted from OSM data by osmTGmod.
For further information on the generation of the grid topology please refer to [Mueller2018].
The neighbouring countries are included in the model in a significantly lower
spatial resolution with one or two nodes per country. The border crossing lines
extracted by osmTGmod are extended to representative nodes of the respective
country in dataset
ElectricalNeighbours. The
resulting grid topology is shown in the following figure.


	..figure:: images/Stromnetz.png

	
	scale

	50 %



	name

	gridtopology_ehv_hv



	alt

	Grid topology extra-high and high voltage grid











Medium and low-voltage grids

Medium (MV) and low (LV) voltage grid topologies for entire Germany are generated using
the python tool ding0 ding0 [https://github.com/openego/ding0].
ding0 generates synthetic grid topologies based on high-resolution geodata and routing
algorithms as well as typical network planning principles.
The generation of the
grid topologies is not part of eGon_data, but ding0 solely uses data generated with eGon_data,
such as locations of HV/MV stations (see High and extra-high voltage grids), locations and peak demands
of buildings in the grid (see Building data respectively Electricity),
as well as locations of generators from MaStR (see Marktstammdatenregister). A full list
of tables used in ding0 can be found in its config [https://github.com/openego/ding0/blob/dev/ding0/config/config_db_tables.cfg].
An exemplary MV grid with one underlying LV grid is shown in figure Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0.
The grid data of all over 3.800 MV grids is published on zenodo [https://zenodo.org/record/890479].


[image: _images/ding0_mv_lv_grid.png]

Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0



Besides data on buildings and generators, ding0 requires data on the supplied areas
by each grid. This is as well done in eGon_data and described in the following.


MV grid districts

Medium-voltage (MV) grid districts describe the area supplied by one MV grid.
They are defined by one polygon that represents the
supply area. Each MV grid district is connected to the HV grid via a single
substation. An exemplary MV grid district is shown in figure Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0 (orange line).

The MV grid districts are generated in the dataset
MvGridDistricts.
The methods used for identifying the MV grid districts are heavily inspired
by Hülk et al. (2017) [Huelk2017]
(section 2.3), but the implementation differs in detail.
The main difference is that direct adjacency is preferred over proximity.
For polygons of municipalities
without a substation inside, it is iteratively checked for direct adjacent
other polygons that have a substation inside. Speaking visually, a MV grid
district grows around a polygon with a substation inside.

The grid districts are identified using three data sources


	Polygons of municipalities (Vg250GemClean)


	Locations of HV-MV substations (EgonHvmvSubstation)


	HV-MV substation voronoi polygons (EgonHvmvSubstationVoronoi)




Fundamentally, it is assumed that grid districts (supply areas) often go
along borders of administrative units, in particular along the borders of
municipalities due to the concession levy.
Furthermore, it is assumed that one grid district is supplied via a single
substation and that locations of substations and grid districts are designed
for aiming least lengths of grid line and cables.

With these assumptions, the three data sources from above are processed as
follows:


	Find the number of substations inside each municipality


	Split municipalities with more than one substation inside


	Cut polygons of municipalities with voronoi polygons of respective
substations


	Assign resulting municipality polygon fragments to nearest substation






	Assign municipalities without a single substation to nearest substation in
the neighborhood


	Merge all municipality polygons and parts of municipality polygons to a
single polygon grouped by the assigned substation




For finding the nearest substation, as already said, direct adjacency is
preferred over closest distance. This means, the nearest substation does not
necessarily have to be the closest substation in the sense of beeline distance.
But it is the substation definitely located in a neighboring polygon. This
prevents the algorithm to find solutions where a MV grid districts consists of
multi-polygons with some space in between.
Nevertheless, beeline distance still plays an important role, as the algorithm
acts in two steps


	Iteratively look for neighboring polygons until there are no further
polygons


	Find a polygon to assign to by minimum beeline distance




The second step is required in order to cover edge cases, such as islands.

For understanding how this is implemented into separate functions, please
see define_mv_grid_districts.



Load areas

Load areas (LAs) are defined as geographic clusters where electricity is consumed.
They are used in ding0 to determine the extent and number of LV grids. Thus, within
each LA there are one or multiple MV-LV substations, each supplying one LV grid.
Exemplary load areas are shown in figure Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0 (grey and orange areas).

The load areas are set up in the
LoadArea dataset.
The methods used for identifying the load areas are heavily inspired
by Hülk et al. (2017) [Huelk2017] (section 2.4).





Gas grid

Information about the gas grids and how they were created


Methane grid



Hydrogen grid





Demand

Electricity, heat and gas demands from different consumption sectors are taken into account in eGon-data. The related methods to distribute and
process the demand data are described in the following chapters for the different consumption sectors separately.


Electricity

The electricity demand considered includes demand from the residential, commercial and industrial sector.
The target values for scenario eGon2035 are taken from the German grid development plan from 2021 [NEP2021],
whereas the distribution on NUTS3-levels corresponds to the data from the research project DemandRegio [demandregio].
The following table lists the electricity demands per sector:


Electricity demand per sector





	Sector

	Annual electricity demand in TWh





	residential

	115.1



	commercial

	123.5



	industrial

	259.5






A further spatial and temporal distribution of the electricity demand is needed to fullfil all requirements of the
subsequent grid optimization. Therefore different, sector-specific distributions methods were developed and applied.

The annual electricity demands of households on NUTS3-level from DemandRegio are scaled to meet the national target
values for the respective scenario in dataset DemandRegio.
A further spatial and temporal distribution of residential electricity demands is performed in
HouseholdElectricityDemand as described
in [Buettner2022].
The result is a consistent dataset across aggregation levels with an hourly resolution.
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Electricity demand on NUTS 3-level (upper left); Exemplary MVGD (upper right); Study region in Flensburg (20 Census cells, bottom) from [Buettner2022]
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Electricity demand time series on different aggregation levels from [Buettner2022]



The distribution of electricity demand from the commercial, trade and service (CTS) sector is also based on data from
DemandRegio, which provides annual electricity demands on NUTS3-level for Germany. In  dataset
CtsElectricityDemand the annual electricity
demands are further distributed to census cells (100x100m cells from [Census]) based on the distribution of heat demands,
which is taken from the Pan-European Thermal Altlas version 5.0.1 [Peta]. For further information refer to section
ref:heat_demand.
The applied methods for a futher spatial and temporal distribution to buildings is described in [Buettner2022] and
performed in dataset CtsDemandBuildings

To distribute the annual industrial electricity demand OSM landuse data as well as information on industrial sites are
taken into account.
In a first step (CtsElectricityDemand)
different sources providing information about specific sites and further information on the  industry sector in which
the respective industrial site operates are combined. Here, the three data sources [Hotmaps], [sEEnergies] and
[Schmidt2018] are aligned and joined.
Based on the resulting list of industrial sites in Germany and information on industrial landuse areas from OSM [OSM]
which where extracted and processed in OsmLanduse the annual demands
were distributed.
The spatial and temporal distribution is performed in
IndustrialDemandCurves.
For the spatial distribution of annual electricity demands from DemandRegio [demandregio] which are available on
NUTS3-level are in a first step evenly split 50/50 between industrial sites and OSM-polygons tagged as industrial areas.
Per NUTS-3 area the respective shares are then distributed linearily based on the area of the corresponding landuse polygons
and evenly to the identified industrial sites.
In a next step the temporal disaggregation of the annual demands is carried out taking information about the industrial
sectors and sector-specific standard load profiles from [demandregio] into account.
Based on the resulting time series and their peak loads the corresponding grid level and grid connections point is
identified.

The neighbouring countries considered in the model are represented in a lower spatial resolution of one or two buses per
country. The national demand timeseries in an hourly resolution of the respective countries is taken from the Ten-Year
Network Development Plan, Version 2020 [TYNDP]. In case no data for the target year is available the data is is
interpolated linearly.
Refer to the corresponding dataset for detailed information:
ElectricalNeighbours



Heat

Heat demands comprise space heating and drinking hot water demands from
residential and comertial trade and service (CTS) buildings.
Process heat demands from the industry are, depending on the required temperature
level, modelled as electrcity, hydrogen or methane demand.

The spatial distribution of annual heat demands is taken from the Pan-European
Thermal Altlas version 5.0.1 [Peta].
This source provides data on annual european residential and CTS heat demands
per hectar cell for the year 2015.
In order to model future demands, the demand distribution extracted by Peta is
then scaled to meet a national annual demand from external sources.
The following national demands are taken for the selected scenarios:


Heat demands per sector and scenario







	
	Residential sector

	CTS sector

	Sources





	eGon2035

	379 TWh

	122 TWh

	[Energiereferenzprognose]



	eGon100RE

	284 TWh

	89 TWh

	[Energiereferenzprognose]






The resulting data is stored in the database table demand.egon_peta_heat.
The implementation of these dataprocessing steps can be found in HeatDemandImport.

Figure Spatial distribution of residential heat demand in scenario eGon2035 shows the distribution of residential heat demands for scenario eGon2035,
categorized for different levels of annual demands.
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Spatial distribution of residential heat demand in scenario eGon2035



Afterwards, the annual heat demands are used to create hourly heat demand profiles.
For residential heat demand profiles a pool of synthetical created bottom-up demand
profiles is used. Depending on the mean temperature per day, these profiles are
randomly assigned to each residential building. The methodology is described in
detail in [Buettner2022].

Data on residential heat demand profiles is stored in the database within the tables demand.egon_heat_timeseries_selected_profiles, demand.egon_daily_heat_demand_per_climate_zone, boundaries.egon_map_zensus_climate_zones. To create the profiles for a selected buidling, these tables
have to be combined, e.g. like this:

SELECT (b.demand/f.count * UNNEST(e.idp) * d.daily_demand_share)*1000 AS demand_profile
FROM (SELECT * FROM demand.egon_heat_timeseries_selected_profiles,
UNNEST(selected_idp_profiles) WITH ORDINALITY as selected_idp) a
JOIN demand.egon_peta_heat b
ON b.zensus_population_id = a.zensus_population_id
JOIN boundaries.egon_map_zensus_climate_zones c
ON c.zensus_population_id = a.zensus_population_id
JOIN demand.egon_daily_heat_demand_per_climate_zone d
ON (c.climate_zone = d.climate_zone AND d.day_of_year = ordinality)
JOIN demand.egon_heat_idp_pool e
ON selected_idp = e.index
JOIN (SELECT zensus_population_id, COUNT(building_id)
FROM demand.egon_heat_timeseries_selected_profiles
GROUP BY zensus_population_id
) f
ON f.zensus_population_id = a.zensus_population_id
WHERE a.building_id = SELECTED_BUILDING_ID
AND b.scenario = 'eGon2035'
AND b.sector = 'residential';





Exemplary resulting residential heat demand time series for a selected day in winter and
summer considering different aggregation levels are visualized in figures Temporal distribution of residential heat demand for a selected day in winter and Temporal distribution of residential heat demand for a selected day in summer.


[image: _images/residential_heat_demand_profile_winter.png]

Temporal distribution of residential heat demand for a selected day in winter
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Temporal distribution of residential heat demand for a selected day in summer



The temporal disaggregation of CTS heat demand is done using Standard Load Profiles Gas
from demandregio [demandregio] considering different profiles per CTS branch.

The heat demand time series for both sectors creation is done in the Dataset
HeatTimeSeries.



Gas

Information about gas demands and their spatial and temporal aggregation, including hydrogen and methane demands



Mobility


Motorized individual travel

The electricity demand data of motorized individual travel (MIT) for both the eGon2035
and eGon100RE scenario is set up
in the MotorizedIndividualTravel
dataset.

The profiles are generated using a modified version of
SimBEV v0.1.3 [https://github.com/rl-institut/simbev/tree/1f87c716d14ccc4a658b8d2b01fd12b88a4334d5].
SimBEV generates driving profiles for battery electric vehicles (BEVs) and
plug-in hybrid electric vehicles (PHEVs) based on MID survey data [MiD2017] per
RegioStaR7 region type [RegioStaR7_2020].
These profiles include driving, parking and (user-oriented) charging times.
Different vehicle classes are taken
into account whose assumed technical data is given in table EV types.
Moreover, charging probabilities for multiple types of charging
infrastructure are presumed based on [NOW2020] and [Helfenbein2021].
Given these assumptions, a pool of 33.000 EVs-types is pre-generated and provided through the data bundle
(see Data bundle) as well as written
to table EgonEvTrip.
The complete tech data and assumptions of the run can be found in the
metadata_simbev_run.json file, that is provided along with the trip data.


EV types









	Tecnnology

	Size

	Max. charging capacity slow in kW

	Max. charging capacity fast in kW

	Battery capacity in kWh

	Energy consumption in kWh/km





	BEV

	mini

	11

	120

	60

	0.1397



	BEV

	medium

	22

	350

	90

	0.1746



	BEV

	luxury

	50

	350

	110

	0.2096



	PHEV

	mini

	3.7

	40

	14

	0.1425



	PHEV

	medium

	11

	40

	20

	0.1782



	PHEV

	luxury

	11

	120

	30

	0.2138








Heavy-duty transport

In the context of the eGon project, it is assumed that all e-trucks will be
completely hydrogen-powered. The hydrogen demand data of all e-trucks is set up
in the HeavyDutyTransport
dataset for both the eGon2035 and eGon100RE scenario.

In both scenarios the hydrogen consumption is
assumed to be 6.68 kgH2 per 100 km with an additional supply chain leakage rate of 0.5 %
(see here [https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-delivery]).

For the eGon2035 scenario the ramp-up figures are taken from the
network development plan (version 2021) [https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/NEP_2035_V2021_2_Entwurf_Teil1.pdf]
(Scenario C 2035). According to this, 100,000 e-trucks are
expected in Germany in 2035, each covering an average of 100,000 km per year.
In total this means 10 Billion km.

For the eGon100RE scenario it is assumed that the heavy-duty transport is
completely hydrogen-powered. The total freight traffic with 40 Billion km is
taken from the
BMWK Langfristszenarien [https://www.langfristszenarien.de/enertile-explorer-wAssets/docs/LFS3_Langbericht_Verkehr_final.pdf#page=17]
for heavy-duty vehicles larger 12 t allowed total weight (SNF > 12 t zGG).

The total hydrogen demand is spatially distributed on the basis of traffic volume data from [BASt].
For this purpose, first a voronoi partition of Germany using the traffic measuring points is created.
Afterwards, the spatial shares of the Voronoi regions in each NUTS3 area are used to allocate
hydrogen demand to the NUTS3 regions and are then aggregated per NUTS3 region.
The refuelling is assumed to take place at a constant rate.
Finally, to
determine the hydrogen bus where the hydrogen demand is allocated to, the centroid
of each NUTS3 region is used to determine the respective hydrogen Voronoi cell (see
GasAreaseGon2035 and
GasAreaseGon100RE) it is
located in.





Supply

The distribution and assignment of supply capacities or potentials are carried out technology-specific. The different methods are described in the
following chapters.


Electricity

The electrical power plants park, including data on geolocations, installed capacities, etc.
for the different scenarios is set up in the dataset
PowerPlants.

Main inputs into the dataset are target capacities per technology and federal state
in each scenario (see Modeling concept and scenarios) as well as the MaStR (see Marktstammdatenregister),
OpenStreetMap (see OpenStreetMap) and potential areas (provided through the data bundle,
see Data bundle) to distribute the generator capacities within each federal state region.
The approach taken to distribute the target capacities within each federal state differs for
the different technologies and is described in the following.
The final distribution in the eGon2035 scenario is shown in figure Generator park in the eGon2035 scenario.
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Generator park in the eGon2035 scenario




Onshore wind



Offshore wind



PV ground mounted

The distribution of PV ground mounted is implemented in function insert
which is part of the dataset PowerPlants.
The following steps are conducted:


	The sites and capacities of exisitng PV parks are imported using MaStR data (see Marktstammdatenregister).


	Potential areas for PV ground mounted are assumed to be areas next to highways and railways as well as on agricultural land with a low degree of utilisation, as it can be seen in figure Example: sites of existing PV ground mounted parks and potential areas. Those areas (provided through the data bundle, see Data bundle) are imported while merging or disgarding small areas.


	The locations of existing parks and the potential areas are intersected with each other while considering a buffer around the locations of existing parks to find out where there already are parks at or close to potential areas. This results in a selection of potential areas.


	The capacities of the existing parks are considered and compared to the target values for the specific scenario per federal state (see Modeling concept and scenarios). The required expansion capacity is derived.


	If expansion of PV ground mounted capacity is required, capacities are calculated depending on the area size of the formerly selected potential areas. The resulting parks are therefore located on the selected potential areas.


	The resulting capacities are compared to the target values for the specific scenario per federal state. If the target value is exceeded, a linear downscaling is conducted. If the target value is not reached yet, the remaining capacity is distributed linearly among the rest of the potential areas within the state.
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Example: sites of existing PV ground mounted parks and potential areas





PV rooftop

In a first step, the target capacity in the eGon2035 and eGon100RE scenarios is distributed
to all MV grid districts linear to the residential and CTS electricity demands in the
grid district (done in function
pv_rooftop_per_mv_grid).

Afterwards, the PV rooftop capacity per MV grid district is disaggregated
to individual buildings inside the grid district (done in function
pv_rooftop_to_buildings).
The basis for this is data from the MaStR, which is first cleaned and missing information
inferred, and then allocated to specific buildings. New PV plants are in a last step
added based on the capacity distribution from MaStR.
These steps are in more detail described in the following.

MaStR data cleaning and inference:


	Drop duplicates and entries with missing critical data.


	Determine most plausible capacity from multiple values given in MaStR data.


	Drop generators that don’t have a plausible capacity (23.5 MW > P > 0.1 kW).


	Randomly and weighted add a start-up date if it is missing.


	Extract zip and municipality from ‘site’ given in MaStR data.


	Geocode unique zip and municipality combinations with Nominatim (1 sec
delay). Drop generators for which geocoding failed or which are located
outside the municipalities of Germany.


	Add some visual sanity checks for cleaned data.




Allocation of MaStR plants to buildings:


	Allocate each generator to an existing building from OSM or a synthetic building
(see Building data).


	Determine the quantile each generator and building is in depending on the
capacity of the generator and the area of the polygon of the building.


	Randomly distribute generators within each municipality preferably within
the same building area quantile as the generators are capacity wise.


	If not enough buildings exist within a municipality and quantile additional
buildings from other quantiles are chosen randomly.




Disaggregation of PV rooftop scenario capacities:


	The scenario data per federal state is linearly distributed to the MV grid
districts according to the PV rooftop potential per MV grid district.


	The rooftop potential is estimated from the building area given from the OSM
buildings.


	Grid districts, which are located in several federal states, are allocated
PV capacity according to their respective roof potential in the individual
federal states.


	The disaggregation of PV plants within a grid district respects existing
plants from MaStR, which did not reach their end of life.


	New PV plants are randomly and weighted generated using the capacity distribution of
PV rooftop plants from MaStR.


	Plant metadata (e.g. plant orientation) is also added randomly and weighted
using MaStR data as basis.






Hydro

In the case of hydropower plants, a distinction is made between the carrier run-of-river
and reservoir.
The methods to distribute and allocate are the same for both carriers.
In a first step all suitable power plants (correct carrier, valid geolocation, information
about federal state) are selected and their installed capacity is scaled to meet the target
values for the respective federal state and scenario.
Information about the voltage level the power plants are connected to is obtained. In case
no information is availabe the voltage level is identified using threshold values for the
installed capacity (see assign_voltage_level).
In a next step the correct grid connection point is identified based on the voltage level
and geolocation of the power plants (see assign_bus_id)
The resulting list of power plants it added to table
EgonPowerPlants.



Biomass

The allocation of biomass-based power plants follows the same method as the one for hydro
power plants and is performed in function insert_biomass_plants



Conventional

CHP

non-chp

In function allocate_conventional_non_chp_power_plants
capacities for conventional power plants, which are no chp plants, with carrier oil and
gas are allocated.




Heat

Heat demand of residential as well as commercial, trade and service (CTS) buildings can be supplied by different technologies and carriers. Within the data model creation, capacities of supply technologies are assigned to specific locations and their demands. The hourly dispatch of heat supply is not part of the data model, but a result of the grid optimization tools.

In general, heat supply can be divided into three categories which include specific technologies: residential and CTS buildings in a district heating area, buildings supplied by individual heat pumps, and buildings supplied by conventional gas boilers. The shares of these categories are taken from external sources for each scenario.


Heat demands of different supply categories







	
	District heating

	Individual heat pumps

	Individual gas boilers





	eGon2035

	69 TWh

	27.24 TWh

	390.78 TWh



	eGon100RE

	61.5 TWh

	311.5 TWh

	0 TWh






The following subsections describe the heat supply methodology for each category.

First, district heating areas are defined for each scenario based on existing district heating areas and an overall district heating share per scenario. To reduce the model complexity, district heating areas are defined per Census cell, either all buildings within a cell are supplied by district heat or none. The first step of the extraction of district heating areas is the identification of Census cells with buildings that are currently supplied by district heating using the building dataset of Census. All Census cells where more than 30% of the buildings are currently supplied by district heat are defined as cells inside a district heating area.
The identified cells are then summarized by combining cells that have a maximum distance of 500m.

Second, additional Census cells are assigned to district heating areas considering the heat demand density. Assuming that new district heating grids are more likely in cells with high demand, the remaining Census cells outside of a district heating grid are sorted by their demands. Until the pre-defined national district heating demand is met, cells from that list are assigned to district heating areas. This can also result in new district heating grids which cover only a few Census cells.

To avoid unrealistic large district heating grids in areas with many cities close to each other (e.g. the Ruhr Area), district heating areas with an annual demand > 4 TWh are split by NUTS3 boundaries.

The implementation of the district heating area demarcation is done in DistrictHeatingAreas, the resulting data is stored in the tables demand.egon_map_zensus_district_heating_areas and  demand.egon_district_heating_areas.
The resulting district heating grids for the scenario eGon2035 are visualized in figure Defined district heating grids in scenario eGon2035, which also includes a zoom on the district heating grid in Berlin.
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Defined district heating grids in scenario eGon2035



The national capacities for each supply technology are taken from the Grid Development Plan (GDP) for the scenario eGon2035, in the eGon100RE scenario they are the result of the pypsa-eur-sec run. The distribution of the capacities to district heating grids is done similarly based on [FfE2017], which is also used in the GDP. The basic idea of this method is to use a cascade of heat supply technologies until the heat demand can be covered.


	Combined heat and power (CHP) plants are assigned to nearby district heating grids first. Their location and thermal capacities are from Marktstammdatenregister [MaStR]. To identify district heating grids that need additional suppliers, the remaining annual heat demand is calculated using the thermal capacities of the CHP plants and assumed full load hours.


	Large district heating grids with an annual demand that is higher than 96GWh can be supplied by geothermal plants, in case of an intersection of geothermal potential areas and the district heating grid.  Smaller district heating grids can be supplied by solar thermal power plants. The national capacities are distributed proportionally to the remaining heat demands. After assigning these plants, the remaining heat demands are reduced by the thermal output and assumed full load hours.


	Next, the national capacities for central heat pumps and resistive heaters are distributed to all district heating areas proportionally to their remaining demands. Heat pumps are modeled with a time-dependent coefficient of performance depending on the temperature data.


	In the last step, gas boilers are assigned to every district heating grid regardless of the remaining demand. In the optimization, this can be used as a fall-back option to not run into infeasibilities.




The distribution of CHP plants for different carriers is shown in figure Spatial distribution of CHP plants in scenario eGon2035.
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Spatial distribution of CHP plants in scenario eGon2035



Heat pumps supplying individual buildings are first distributed to each medium-voltage grid district, these capacities are later on further disaggregated to single buildings. Similar to central heat pumps they are modeled with a time-dependent coefficient of performance depending on the temperature data.

The distribution of the national capacities to each medium-voltage grid district is proportional to the heat demand outside of district heating grids.

@RLI: Distribution on building level

All residential and CTS buildings that are neither supplied by a district heating grid nor an individual heat pump are supplied by gas boilers. The demand time series of these buildings are multiplied by the efficiency of gas boilers and aggregated per methane grid node.

All heat supply categories are implemented in the dataset HeatSupply. The data is stored in the tables demand.egon_district_heating and  demand.egon_individual_heating.



Gas

Information on gas supply - hydrogen and methane.




Flexibility options

Different flexibility options are part of the model and can be utilized in the optimization of the energy system. Therefore detailed information about
flexibility potentials and their distribution are needed. The considered technologies described in the following chapters range from different storage units,
through dynamic line rating to Demand-Side-Management measures.


Demand-Side Management

Demand-side management (DSM) potentials are calculated in function dsm_cts_ind_processing.
Potentials relevant for the high and extra-high voltage grid are identified in the function dsm_cts_ind,
potentials within the medium- and low-voltage grids are determined within the function dsm_cts_ind_individual
in a higher spatial resolution. All this is part of the dataset DsmPotential.
The implementation is documented in detail within the following student work (in German): [EsterlDentzien].

Loads eligible to be shifted are assumed within industrial loads and loads from Commercial, Trade and Service (CTS).
Therefore, load time series from these sectors are used as input data (see section ref:elec_demand-ref).
Shiftable shares of loads mainly derive from heating and cooling processes and selected energy-intensive
industrial processes (cement production, wood pulp, paper production, recycling paper). Technical and sociotechnical
constraints are considered using the parametrization elaborated in [Heitkoetter]. An overview over the
resulting potentials for scenario eGon2035 can be seen in figure Aggregated DSM potential in Germany for scenario eGon2035. The table below summarizes the
aggregated potential for Germany per scenario. As the annual conventional electrical loads are assumed to be lower in the
scenario eGon100RE, also the DSM potential decreases compared to the scenario eGon2035.
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Aggregated DSM potential in Germany for scenario eGon2035




Aggregated DSM Potential for Germany






	
	CTS

	Industry





	eGon2035

	1.2 GW

	150 MW



	eGon100RE

	900 MW

	150 MW






DSM is modelled following the approach of [Kleinhans]. DSM components are created wherever
respective loads are seen. Minimum and maximum shiftable power per time step depict time-dependent
charging and discharging power of a storage-equivalent buffers. Time-dependent capacities
of those buffers account for the time frame of management bounding the period within which
the shifting can be conducted. Figure Time-dependent DSM potential at one exemplary bus shows the resulting potential at one exemplary bus.
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Time-dependent DSM potential at one exemplary bus





Dynamic line rating

To calculate the transmission capacity of each transmission line in the model,
the procedure suggested in the Principles for the Expansion Planning of the
German Transmission Network [NEP2021] where used:

1. Import the temperature and wind temporal raster layers from ERA-5. Hourly
resolution data from the year 2011 was used. Raster resolution
latitude-longitude grids at 0.25° x 0.25°.

2. Import shape file for the 9 regions proposed by the Principles for
the Expansion Planning. See Figure 1.

[image: regions DLR]
Figure 1: Representative regions in Germany for DLR analysis [NEP2021]

3. Find the lowest wind speed in each region. To perform this, for each
independent region, the wind speed of every cell in the raster layer should be
extracted and compared. This procedure is repeated for each hour in the
year 2011. The results are the 8760 lowest wind speed per region.

4. Find the highest temperature in each region. To perform this, for each
independent region, the temperature of every cell in the raster layer should
be extracted and compared. This procedure is repeated for each hour in the
year 2011. The results are the 8760 maximum temperature per region.

5. Calculate the maximum capacity for each region using the parameters shown in
Figure 2.

[image: table_max_capacity_DLR]
Figure 2: transmission capacity based on max temperature and min wind speed [NEP2021]

6. Assign the maximum capacity of the corresponding region to each transmission
line inside each one of them. Crossborder lines and underground lines receive
no values. It means that their capacities are static and equal to their nominal
values. Lines that cross borders between regions receive the lowest
capacity per hour of the regions containing the line.


	NEP2021(1,2)

	Principles for the Expansion Planning of the German Transmission Network https://www.netzentwicklungsplan.de/







E-Mobility

What flexibilities does e-mobility provide to the system. How did we implement it?



Battery stores

Battery storage units comprise home batteries and larger, grid-supportive batteries. National capacities for home batteries arise from external sources, e.g. the Grid Development Plan for the scenario eGon2035, whereas the capacities of large-scale batteries are a result of the grid optimization tool eTraGo [https://github.com/openego/eTraGo].

Home battery capacities are first distributed to medium-voltage grid districts (MVGD) and based on that further disaggregated to single buildings. The distribution on MVGD level is done proportional to the installed capacities of solar rooftop power plants, assuming that they are used as solar home storage.

Potential large-scale batteries are included in the data model at every substation. The data model includes technical and economic parameters, such as efficiencies and investment costs. The energy-to-power ratio is set to a fixed value of 6 hours. Other central parameters are given in the following table


Parameters of batteries for scenario eGon2035






	
	Value

	Sources





	Efficiency store

	98 %

	[DAE_store]



	Efficiency dispatch

	98 %

	[DAE_store]



	Standing loss

	0 %

	[DAE_store]



	Investment costs

	838 €/kW

	[DAE_store]



	Home storage units

	16.8 GW

	[NEP2021]






On transmission grid level, distinguishing between home batteries and large-scale batteries was not possible. Therefore, the capacities of home batteries were set as a lower boundary of the large-scale battery capacities.
This is implemented in the dataset StorageEtrago, the data for batteries in the transmission grid is stored in the database table grid.egon_etrago_storage.



Gas stores

Description of methods and assumptions to include potential h2 stores in the system



Hydrogen stores



Methane stores



Heat stores

The heat sector can provide flexibility through stores that allow shifting energy in time. The data model includes hot water tanks as heat stores in individual buildings and pit thermal energy storage for district heating grids (further described in District heating).

Within the data model, potential locations as well as technical and economic parameters of these stores are defined. The installed store and (dis-)charging capacities are part of the grid optimization methods that can be performed by eTraGo [https://github.com/openego/eTraGo]. The power-to-energy ratio is not predefined but a result of the optimization, which allows to build heat stores with various time horizons.

Individual heat stores can be built in every building with an individual heat pump.  Central heat stores can be built next to district heating grids. There are no maximum limits for the energy output as well as (dis-)charging capacities implemented yet.

Central cost assumptions for central and decentral heat stores are listed in the table below. The parameters can differ for each scenario in order to include technology updates and learning curves. The table focuses on the scenario eGon2035.


Parameters of heat stores









	
	Technology

	Costs for store capacity

	Costs for (dis-)charging capacity

	Round-trip efficiency

	Sources





	District heating

	Pit thermal energy storage

	0.51 EUR / kWh

	0 EUR / kW

	70 %

	[DAE_store]



	Buildings with heat pump

	Water tank

	1.84 EUR / kWh

	0 EUR / kW

	70 %

	[DAE_store]






The heat stores are implemented as a part of the dataset HeatEtrago, the data is written into the tables grid.egon_etrago_bus, grid.egon_etrago_link and grid.egon_etrago_store.
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Contributing

The research project eGo_n and egon-data are collaborative projects with
several people contributing to it. The following section gives an
overview of applicable guidelines and rules to enable a prospering
collaboration.
Any external contributions are welcome as well, and they are greatly
appreciated! Every little bit helps, and credit will always be given.


Bug reports and feature requests

The best way to report bugs, inform about intended developments, send
feedback or propose a feature
is to file an issue at
https://github.com/openego/eGon-data/issues.

Please tag your issue with one of the predefined labels as it helps
others to keep track of unsolved bugs, open tasks and questions.

To inform others about intended developments please include:
* a describtion of the purpose and the value it adds
* outline the required steps for implementation
* list open questions

When reporting a bug please include all information needed to reproduce
the bug you found.
This may include information on


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.




If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.






Contribution guidelines


Development

Adding changes to the egon-data repository should follow some guidelines:


	Create an issue [https://github.com/openego/eGon-data/issues] in our repository [https://github.com/openego/eGon-data] to describe the intended
developments briefly



	Create a branch for your issue related development from the
dev-branch following our branch naming convention:

git checkout -b `<prefix>/#<issue-id>-very-brief-description`





where issue-id is the issue number on GitHub and prefix is one of



	features


	fixes


	refactorings







depending on which one is appropriate. This command creates a new
branch in your local repository, in which you can now make your
changes. Be sure to check out our style conventions so that your
code is in line with them.
If you don’t have push rights to our repository [https://github.com/openego/eGon-data], you need to fork
it via the “Fork” button in the upper right of the repository [https://github.com/openego/eGon-data]
page and work on the fork.



	Make sure to update the documentation along with your code changes


	When you’re done making changes run all the checks and docs builder
with tox [https://tox.readthedocs.io/en/latest/install.html] one
command:

tox







	Commit your changes and push your branch to GitHub:

git add -p
git commit
git push origin features/#<issue-id>-very-brief-description










Note that the -p switch will make git add iterate
through your changes and prompt for each one on whether you want to
include it in the upcoming commit. This is useful if you made multiple
changes which should conceptually be grouped into different commits,
like e.g. fixing the documentation of one function and changing the
implementation of an unrelated one in parallel, because it allows you
to still make separate commits for these changes. It has the drawback
of not picking up new files though, so if you added files and want to
put them under version control, you have to add them explicitly by
running git add FILE1 FILE2 ... instead.





	Submit a pull request through the GitHub website.






Code and Commit Style

We try the adhere to the PEP 8 Style Guide [https://www.python.org/dev/peps/pep-0008] wherever possible.
In addition to that, we use a code formatter to have a consistent
style, even in cases where PEP 8 leaves multiple degrees of freedom. So
please run your code through black before committing it. 1
PEP 8 also specifies a way to group imports, onto which we put the
additional constraint that the imports within each group are ordered
alphabetically. Once again, you don’t have to keep track of this
manually, but you can use isort [https://pypi.org/project/isort/] to have imports sorted automatically.
Note that pre-commit hooks are configured for this repository, so you
can just pip install pre-commit followed by pre-commit
install in the repository, and every commit will automatically be
checked for style violations.

Unfortunately these tools don’t catch everything, so here’s a short list
of things you have to keep track of manually:



	Black can’t automatically break up overly long strings, so
make use of Python’s automatic string concatenation feature by e.g.
converting

something = "A really really long string"





into the equivalent:

something = (
    "A really really"
    " long string"
)







	Black also can’t check whether you’re using readable names
for your variables. So please don’t use abbreviations. Use readable
names [https://chrisdone.com/posts/german-naming-convention/].


	Black also can’t reformat your comments. So please keep in
mind that PEP 8 specifies a line length of 72 for free flowing text
like comments and docstrings. This also extends to the documentation
in reStructuredText files.







Last but not least, commit messages are a kind of documentation, too,
which should adhere to a certain style. There are quite a few documents
detailing this style, but the shortest and easiest to find is probably
https://commit.style. If you have 15 minutes instead of only five to
spare, there’s also a very good and only slightly longer article [https://chris.beams.io/posts/git-commit/] on
this subject, containing references to other style guides, and also
explaining why commit messages are important.

At the very least, try to only commit small, related changes. If you
have to use an “and” when trying to summarize your changes, they should
probably be grouped into separate commits.


	1

	If you want to be really nice, run any file you touch through
black before making changes, and commit the result
separately from other changes.. The repository may contain wrongly
formatted legacy code, and this way you commit eventually necessary
style fixes separated from your actually meaningful changes, which
makes the reviewers job a lot easier.







Pull Request Guidelines

We use pull requests (PR) to integrate code changes from branches.
PRs always need to be reviewed (exception proves the rule!). Therefore, ask
one of the other developers for reviewing your changes. Once approved, the PR
can be merged. Please delete the branch after merging.

Before requesting a review, please


	Include passing tests (run tox). 2


	Let the workflow run in Test mode once from scratch to verify
successful execution


	Make sure that your changes are tested in integration with other
tasks and on a complete run at least once by merging them into the
continuous-integration/run-everything-over-the-weekend [https://github.com/openego/eGon-data/tree/continuous-integration/run-everything-over-the-weekend] branch.
This branch will regularly be checked out and tested on a complete
workflow run on friday evening.


	Update documentation when there’s new API, functionality etc.


	Add a note to CHANGELOG.rst about the changes and refer to the
corresponding Github issue.


	Add yourself to AUTHORS.rst.





	2

	If you don’t have all the necessary Python versions available locally
you can rely on CI via GitHub actions -
it will run the tests [https://github.com/openego/eGon-data/actions?query=workflow%3A%22Tests%2C+code+style+%26+coverage%22] for each change you add in the pull request.

It will be slower though …





When requesting reviews, please keep in mind it might be a significant effort
to review the PR. Try to make it easier for them and keep the overall effort
as low as possible. Therefore,


	asking for reviewing specific aspects helps reviewers a lot to focus on the
relevant parts


	when multiple people are asked for a review it should be avoided that they
check/test the same things. Be even more specific what you expect from
someone in particular.






What needs to be reviewed?

Things that definitely should be checked during a review of a PR:


	Is the code working? The contributor should already have made sure that
this is the case. Either by automated test or manual execution.


	Is the data correct? Verifying that newly integrated and processed data
is correct is usually not possible during reviewing a PR. If it is necessary,
please ask the reviewer specifically for this.


	Do tests pass? See automatic checks.


	Is the documentation up-to-date? Please check this.


	Was CHANGELOG.rst updated accordingly? Should be the case, please
verify.


	Is metadata complete and correct (in case of data integration)? Please
verify. In case of a pending metadata creation make sure an appropriate
issue is filed.







Extending the data workflow

The egon-data workflow uses Apache Airflow which organizes the order of
different processing steps and their execution.


How to add Python scripts

To integrate a new Python function to the egon-data workflow follow the
steps listed:


	Add your well documented script to the egon-data repository


	Integrate functions which need to be called within the workflow to
pipeline.py, which organzies and calls the different tasks within the
workflow


	Define the interdependencies between the scripts by setting the task
downstream to another required task


	The workflow can now be triggered via Apache Airflow






Where to save (downloaded) data?

If a task requires to retrieve some data from external sources which needs to
be saved locally, please use CWD to store the data. This is achieved by using

from pathlib import Path
from urllib.request import urlretrieve

filepath = Path(".") / "filename.csv"
urlretrieve("https://url/to/file", filepath)







Add metadata

Add a metadata for every dataset you create for describing data with
machine-readable information. Adhere to the OEP Metadata v1.4.1, you can
follow
the example [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/latest/example.json]
to understand how the fields are used. Field are described in detail in the
Open Energy Metadata Description [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/v141/metadata_key_description.md].

You can obtain the metadata string from a table you created in SQL via

SELECT obj_description('<SCHEMA>.<TABLE>'::regclass);





Alternatively, you can write the table comment directly to a JSON file by

psql -h <HOST> -p <PORT> -d <DB> -U <USER> -c "\COPY (SELECT obj_description('<SCHEMA>.<TABLE>'::regclass)) TO '/PATH/TO/FILE.json';"





For bulk export of all DB’s table comments you can use this script [https://gist.github.com/nesnoj/86145999eca8182f43c2bca36bcc984f].
Please verify that your metadata string is in compliance with the OEP Metadata
standard version 1.4.1 using the OMI tool [https://github.com/OpenEnergyPlatform/omi] (tool is shipped with eGon-data):

omi translate -f oep-v1.4 -t oep-v1.4 metadata_file.json





If your metadata string is correct, OMI puts the keys in the correct order and
prints the full string (use -o option for export).

You may omit the fields id and publicationDate in your string as it will be
automatically set at the end of the pipeline but you’re required to set them to
some value for a complete validation with OMI. For datasets published on the
OEP id will be the URL which points to the table, it will follow the pattern
https://openenergy-platform.org/dataedit/view/SCHEMA/TABLE.

For previous discussions on metadata, you may want to check
PR 176 [https://github.com/openego/eGon-data/pull/176].


Helpers

You can use the
Metadata creator [https://meta.rl-institut.de/meta_creator/141] GUI.
Fill the fields and hit Edit JSON to get the metadata string. Vice versa,
you can paste a metadata string into this box and the fields will be filled
automatically which may be helpful if you want to amend existing strings.

There are some licence templates provided in egon.data.metadata
you can make use of for fields 11.4 and 12 of the
Open Energy Metadata Description [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/v141/metadata_key_description.md]. Also, there’s a template for the
metaMetadata (field 16).

There are some functions to quickly generate a template for the
resource fields (field 14.6.1 in Open Energy Metadata Description [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/v141/metadata_key_description.md]) from
a SQLA table class or a DB table. This might be especially helpful if your
table has plenty of columns.


	From SQLA table class:
egon.data.metadata.generate_resource_fields_from_sqla_model()


	From database table:
egon.data.metadata.generate_resource_fields_from_db_table()






Sources

The sources (field 11) are the most important parts of the metadata which
need to be filled manually. You may also add references to tables in eGon-data
(e.g. from an upstream task) so you don’t have to list all original sources
again. Make sure you include all upstream attribution requirements.

The following example uses various input datasets whose attribution must be
retained:

"sources": [
    {
        "title": "eGo^n - Medium voltage grid districts",
        "description": (
            "Medium-voltage grid districts describe the area supplied by "
            "one MV grid. Medium-voltage grid districts are defined by one "
            "polygon that represents the supply area. Each MV grid district "
            "is connected to the HV grid via a single substation."
        ),
        "path": "https://openenergy-platform.org/dataedit/view/"
                "grid/egon_mv_grid_district", # "id" in the source dataset
        "licenses": [
            license_odbl(attribution=
                "© OpenStreetMap contributors, 2021; "
                "© Statistische Ämter des Bundes und der Länder, 2014; "
                "© Statistisches Bundesamt, Wiesbaden 2015; "
                "(Daten verändert)"
            )
        ]
    },
    # more sources...
]








Adjusting test mode data

When integrating new data or data processing scripts, make sure the
Test mode still works correctly on a limited subset of data.
In particular, if a new external data sources gets integrated make sure the
data gets cut to the region of the test mode.




Documentation

eGon-data could always use more documentation, whether as part of the
official eGon-data docs, in docstrings, or even in articles, blog posts
or similar resources. Always keep in mind to update the documentation
along with your code changes though.

The changes of the documentation in a feature branch get visible once a
pull request is opened.


How to document Python scripts

Use docstrings to document your Python code. Note that PEP 8 also
contains a section [https://www.python.org/dev/peps/pep-0008/#documentation-strings] on docstrings and that there is
a whole PEP [https://www.python.org/dev/peps/pep-0257/] dedicated to docstring conventions. Try to
adhere to both of them.
Additionally every Python script needs to contain a header describing
the general functionality and objective and including information on
copyright, license and authors.

""" Provide an example of the first line of a module docstring.

This is an example header describing the functionalities of a Python
script to give the user a general overview of what's happening here.
"""

__copyright__ = "Example Institut"
__license__ = "GNU Affero General Public License Version 3 (AGPL-3.0)"
__url__ = "https://github.com/openego/eGon-data/blob/main/LICENSE"
__author__ = "github_alias1, github_alias2"







How to document SQL scripts

Please also add a similar header to your SQL scripts to give users and
fellow developers an insight into your scripts and the methodologies
applied. Please describe the content and objectives of the script
briefly but as detailed as needed to allow other to comprehend how it
works.

/*
This is an example header describing the functionalities of a SQL
script to give the user a general overview what's happening here

__copyright__ = "Example Institut"
__license__ = "GNU Affero General Public License Version 3 (AGPL-3.0)"
__url__ = "https://github.com/openego/eGon-data/blob/main/LICENSE"
__author__ = "github_alias1, github_alias2"
*/





You can build the documentation locally with (executed in the repos root
directory)

sphinx-build -E -a docs docs/_build/





Eventually, you might need to install additional dependencies for building the
documenmtation:

pip install -r docs/requirements.txt







Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature





To run all the test environments in parallel:

tox -p auto
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Changelog


Unreleased


Added


	Include description of the egon-data workflow in our documentation
#23 [https://github.com/openego/eGon-data/issues/23]


	There’s now a wrapper around subprocess.run in
egon.data.subprocess.run. This wrapper catches errors better and
displays better error messages than Python’s built-in function. Use
this wrapper wenn calling other programs in Airflow tasks.


	You can now override the default database configuration using command
line arguments. Look for the switches starting with --database in
egon-data --help. See PR #159 [https://github.com/openego/eGon-data/pull/159] for more details.


	Docker will not be used if there is already a service listening on the
HOST:PORT combination configured for the database.


	You can now supply values for the command line arguments for
egon-data using a configuration file. If the configuration file
doesn’t exist, it will be created by egon-data on it’s first run.
Note that the configuration file is read from and written to the
directtory in which egon-data is started, so it’s probably best to
run egon-data in a dedicated directory.
There’s also the new function egon.data.config.settings which
returns the current configuration settings. See PR #159 [https://github.com/openego/eGon-data/pull/159] for more
details.


	You can now use tasks which are not part of a Dataset, i.e. which
are unversioned, as dependencies of a dataset. See `PR #318`_ for more
details.


	You can now force the tasks of a Dataset to be always executed by
giving the version of the Dataset a ".dev" suffix. See `PR
#318`_ for more details.


	OSM data import as done in open_ego
#1 [https://github.com/openego/eGon-data/issues/1]
which was updated to the latest long-term data set of the 2021-01-01
in #223 [https://github.com/openego/eGon-data/issues/223]


	Verwaltungsgebiete data import (vg250) more or less done as in
open_ego
#3 [https://github.com/openego/eGon-data/issues/3]


	Zensus population data import
#2 [https://github.com/openego/eGon-data/issues/2]


	Zensus data import for households, apartments and buildings
#91 [https://github.com/openego/eGon-data/issues/91]


	DemandRegio data import for annual electricity demands
#5 [https://github.com/openego/eGon-data/issues/5]


	Download cleaned open-MaStR data from Zenodo
#14 [https://github.com/openego/eGon-data/issues/14]


	NEP 2021 input data import
#45 [https://github.com/openego/eGon-data/issues/45]


	Option for running workflow in test mode
#112 [https://github.com/openego/eGon-data/issues/112]


	Abstraction of hvmv and ehv substations
#9 [https://github.com/openego/eGon-data/issues/9]


	Filter zensus being inside Germany and assign population to
municipalities
#7 [https://github.com/openego/eGon-data/issues/7]


	RE potential areas data import
#124 [https://github.com/openego/eGon-data/issues/124]


	Heat demand data import
#101 [https://github.com/openego/eGon-data/issues/101]


	Demographic change integration
#47 [https://github.com/openego/eGon-data/issues/47]


	Creation of voronoi polygons for hvmv and ehv substations
#9 [https://github.com/openego/eGon-data/issues/9]


	Add hydro and biomass power plants eGon2035
#127 [https://github.com/openego/eGon-data/issues/127]


	Creation of the ehv/hv grid model with osmTGmod, see
issue #4 [https://github.com/openego/eGon-data/issues/4] and
PR #164 [https://github.com/openego/eGon-data/pull/164]


	Identification of medium-voltage grid districts
#10 [https://github.com/openego/eGon-data/pull/10]


	Distribute electrical demands of households to zensus cells
#181 [https://github.com/openego/eGon-data/issues/181]


	Distribute electrical demands of cts to zensus cells
#210 [https://github.com/openego/eGon-data/issues/210]


	Include industrial sites’ download, import and merge
#117 [https://github.com/openego/eGon-data/issues/117]


	Integrate scenario table with parameters for each sector
#177 [https://github.com/openego/eGon-data/issues/177]


	The volume of the docker container for the PostgreSQL database
is saved in the project directory under docker/database-data.
The current user ($USER) is owner of the volume.
Containers created prior to this change will fail when using the
changed code. The container needs to be re-created.
#228 [https://github.com/openego/eGon-data/issues/228]


	Extract landuse areas from OSM
#214 [https://github.com/openego/eGon-data/issues/214]


	Integrate weather data and renewable feedin timeseries
#19 [https://github.com/openego/eGon-data/issues/19]


	Create and import district heating areas
#162 [https://github.com/openego/eGon-data/issues/162]


	Integrate electrical load time series for cts sector
#109 [https://github.com/openego/eGon-data/issues/109]


	Assign voltage level and bus_id to power plants
#15 [https://github.com/openego/eGon-data/issues/15]


	Integrate solar rooftop for etrago tables
#255 [https://github.com/openego/eGon-data/issues/255]


	Integrate gas bus and link tables
#198 [https://github.com/openego/eGon-data/issues/198]


	Integrate data bundle
#272 [https://github.com/openego/eGon-data/issues/272]


	Add household electricity demand time series, mapping of
demand profiles to census cells and aggregated household
electricity demand time series at MV grid district level
#256 [https://github.com/openego/eGon-data/issues/256]


	Integrate power-to-gas installation potential links
#293 [https://github.com/openego/eGon-data/issues/293]


	Integrate distribution of wind onshore and pv ground mounted
generation
#146 [https://github.com/openego/eGon-data/issues/146]


	Integrate dynamic line rating potentials
#72 [https://github.com/openego/eGon-data/issues/72]


	Integrate gas voronoi polygons
#308 [https://github.com/openego/eGon-data/issues/308]


	Integrate supply strategies for individual and district heating
#232 [https://github.com/openego/eGon-data/issues/232]


	Integrate gas production
#321 [https://github.com/openego/eGon-data/issues/321]


	Integrate industrial time series creation
#237 [https://github.com/openego/eGon-data/issues/237]


	Merge electrical loads per bus and export to etrago tables
#328 [https://github.com/openego/eGon-data/issues/328]


	Insert industial gas demand
#358 [https://github.com/openego/eGon-data/issues/358]


	Integrate existing CHP and extdended CHP > 10MW_el
#266 [https://github.com/openego/eGon-data/issues/266]


	Add random seed to CLI parameters
#351 [https://github.com/openego/eGon-data/issues/351]


	Extend zensus by a combined table with all cells where
there’s either building, apartment or population data
#359 [https://github.com/openego/eGon-data/issues/359]


	Include allocation of pumped hydro units
#332 [https://github.com/openego/eGon-data/issues/332]


	Add example metadata for OSM, VG250 and Zensus VG250.
Add metadata templates for licences, context and some helper
functions. Extend docs on how to create metadata for tables.
#139 [https://github.com/openego/eGon-data/issues/139]


	Integrate DSM potentials for CTS and industry
#259 [https://github.com/openego/eGon-data/issues/259]


	Assign weather cell id to weather dependant power plants
#330 [https://github.com/openego/eGon-data/issues/330]


	Distribute wind offshore capacities
#329 [https://github.com/openego/eGon-data/issues/329]


	Add CH4 storages
#405 [https://github.com/openego/eGon-data/issues/405]


	Include allocation of conventional (non CHP) power plants
#392 [https://github.com/openego/eGon-data/issues/392]


	Fill egon-etrago-generators table
#485 [https://github.com/openego/eGon-data/issues/485]


	Include time-dependent coefficient of performance for heat pumps
#532 [https://github.com/openego/eGon-data/issues/532]


	Limit number of parallel processes per task
#265 [https://github.com/openego/eGon-data/issues/265]


	Include biomass CHP plants to eTraGo tables
#498 [https://github.com/openego/eGon-data/issues/498]


	Include Pypsa default values in table creation
#544 [https://github.com/openego/eGon-data/issues/544]


	Include PHS in eTraGo tables
#333 [https://github.com/openego/eGon-data/issues/333]


	Include feedin time series for wind offshore
#531 [https://github.com/openego/eGon-data/issues/531]


	Include carrier names in eTraGo table
#551 [https://github.com/openego/eGon-data/issues/551]


	Include hydrogen infrastructure for eGon2035 scenario
#474 [https://github.com/openego/eGon-data/issues/474]


	Include downloaded pypsa-eur-sec results
#138 [https://github.com/openego/eGon-data/issues/138]


	Create heat buses for eGon100RE scenario
#582 [https://github.com/openego/eGon-data/issues/582]


	Filter for DE in gas infrastructure deletion at beginning of
respective tasks
#567 [https://github.com/openego/eGon-data/issues/567]


	Insert open cycle gas turbines into eTraGo tables
#548 [https://github.com/openego/eGon-data/issues/548]


	Preprocess buildings and amenities for LV grids
#262 [https://github.com/openego/eGon-data/issues/262]


	Assign household profiles to OSM buildings
#435 [https://github.com/openego/eGon-data/issues/435]


	Add link to meta creator to docs
#599 [https://github.com/openego/eGon-data/issues/599]


	Add extendable batteries and heat stores
#566 [https://github.com/openego/eGon-data/issues/566]


	Add efficiency, capital_cost and marginal_cost to gas related data in
etrago tables
#596 [https://github.com/openego/eGon-data/issues/596]


	Add wind onshore farms for the eGon100RE scenario
#690 [https://github.com/openego/eGon-data/issues/690]


	The shared memory under “/dev/shm” is now shared between host and
container. This was done because Docker has a rather tiny default for
the size of “/dev/shm” which caused random problems. Guessing what
size is correct is also not a good idea, so sharing between host and
container seems like the best option. This restricts using egon-data
with docker to Linux and MacOS, if the latter has “/dev/shm” but
seems like the best course of action for now. Done via PR #703 [https://github.com/openego/eGon-data/pull/703] and
hopefully prevents issues #702 [https://github.com/openego/eGon-data/issues/702] and #267 [https://github.com/openego/eGon-data/issues/267] from ever occurring
again.


	Provide wrapper to catch DB unique violation
#514 [https://github.com/openego/eGon-data/issues/514]


	Add electric scenario parameters for eGon100RE
#699 [https://github.com/openego/eGon-data/issues/699]


	Introduce Sanity checks for eGon2035
#382 [https://github.com/openego/eGon-data/issues/382]


	Add motorized individual travel
#553 [https://github.com/openego/eGon-data/issues/553]


	Allocating MaStR PV rooftop power plants to OSM and synthetic
buildings. Desaggregating PV rooftop scenarios to mv grid districts
and OSM and synthetic buildings.
#684 [https://github.com/openego/eGon-data/issues/684]


	Add mapping zensus - weather cells
#845 [https://github.com/openego/eGon-data/issues/845]


	Add pv rooftop plants per mv grid for eGon100RE
#861 [https://github.com/openego/eGon-data/issues/861]


	Integrated heavy duty transport FCEV
#552 [https://github.com/openego/eGon-data/issues/552]


	Assign CTS demands to buildings
#671 [https://github.com/openego/eGon-data/issues/671]


	Add sanity checks for residential electricity loads
#902 [https://github.com/openego/eGon-data/issues/902]


	Add sanity checks for cts loads
#919 [https://github.com/openego/eGon-data/issues/919]


	Add distribution of CHP plants for eGon100RE
#851 [https://github.com/openego/eGon-data/issues/851]


	Add mapping table for all used buildings
#962 [https://github.com/openego/eGon-data/issues/962]


	Add charging infrastructure for e-mobility
#937 [https://github.com/openego/eGon-data/issues/937]


	Add zipfile check
#969 [https://github.com/openego/eGon-data/issues/969]


	Add marginal costs for generators abroad and for carriers nuclear and
coal
#907 [https://github.com/openego/eGon-data/issues/907]


	Add wind off shore power plants for eGon100RE
#868 [https://github.com/openego/eGon-data/issues/868]


	Write simBEV metadata to DB table
PR #978 [https://github.com/openego/eGon-data/pull/978]


	Add voltage level for electricity building loads
#955 [https://github.com/openego/eGon-data/issues/955]


	Add desaggregation of pv home batteries onto buildings
#988 [https://github.com/openego/eGon-data/issues/988]


	Desaggregation of DSM time series onto CTS consumers per bus id and
individual indutry consumers.
#1048 [https://github.com/openego/eGon-data/issues/1048]


	Add load areas
#1014 [https://github.com/openego/eGon-data/issues/1014]


	Add new MaStR dataset
#1051 [https://github.com/openego/eGon-data/issues/1051]


	Heat pump desaggregation to buildings
PR #903 [https://github.com/openego/eGon-data/pull/903]


	Add low flex scenario ‘eGon2035_lowflex’
#822 [https://github.com/openego/eGon-data/issues/822]


	Add MaStR geocoding and handling of conventional generators
#1095 [https://github.com/openego/eGon-data/issues/1095]






Changed


	Adapt structure of the documentation to project specific requirements
#20 [https://github.com/openego/eGon-data/issues/20]


	Switch from Travis to GitHub actions for CI jobs
#92 [https://github.com/openego/eGon-data/issues/92]


	Rename columns to id and zensus_population_id in zensus tables
#140 [https://github.com/openego/eGon-data/issues/140]


	Revise docs CONTRIBUTING section and in particular PR guidelines
#88 [https://github.com/openego/eGon-data/issues/88] and
#145 [https://github.com/openego/eGon-data/issues/145]


	Drop support for Python3.6
#148 [https://github.com/openego/eGon-data/issues/148]


	Improve selection of zensus data in test mode
#151 [https://github.com/openego/eGon-data/issues/151]


	Delete tables before re-creation and data insertation
#166 [https://github.com/openego/eGon-data/issues/166]


	Adjust residential heat demand in unpopulated zenus cells
#167 [https://github.com/openego/eGon-data/issues/167]


	Introduce mapping between VG250 municipalities and census cells
#165 [https://github.com/openego/eGon-data/issues/165]


	Delete tables if they exist before re-creation and data insertation
#166 [https://github.com/openego/eGon-data/issues/166]


	Add gdal to pre-requisites
#185 [https://github.com/openego/eGon-data/issues/185]


	Update task zensus-inside-germany
#196 [https://github.com/openego/eGon-data/issues/196]


	Update installation of demandregio’s disaggregator
#202 [https://github.com/openego/eGon-data/issues/202]


	Update etrago tables
#243 [https://github.com/openego/eGon-data/issues/243] and
#285 [https://github.com/openego/eGon-data/issues/285]


	Migrate VG250 to datasets
#283 [https://github.com/openego/eGon-data/issues/283]


	Allow configuring the airflow port
#281 [https://github.com/openego/eGon-data/issues/281]


	Migrate mastr, mv_grid_districts and re_potential_areas to datasets
#297 [https://github.com/openego/eGon-data/issues/297]


	Migrate industrial sites to datasets
#237 [https://github.com/openego/eGon-data/issues/237]


	Rename etrago tables from e.g. egon_pf_hv_bus to egon_etrago bus etc.
#334 [https://github.com/openego/eGon-data/issues/334]


	Move functions used by multiple datasets
#323 [https://github.com/openego/eGon-data/issues/323]


	Migrate scenario tables to datasets
#309 [https://github.com/openego/eGon-data/issues/309]


	Migrate weather data and power plants to datasets
#314 [https://github.com/openego/eGon-data/issues/314]


	Create and fill table for CTS electricity demand per bus
#326 [https://github.com/openego/eGon-data/issues/326]


	Migrate osmTGmod to datasets
#305 [https://github.com/openego/eGon-data/issues/305]


	Filter osm landuse areas, rename industrial sites tables and update
load curve function
#378 [https://github.com/openego/eGon-data/issues/378]


	Remove version columns from eTraGo tables and related code
#384 [https://github.com/openego/eGon-data/issues/384]


	Remove country column from scenario capacities table
#391 [https://github.com/openego/eGon-data/issues/391]


	Update version of zenodo download
#397 [https://github.com/openego/eGon-data/issues/397]


	Rename columns gid to id
#169 [https://github.com/openego/eGon-data/issues/169]


	Remove upper version limit of pandas
#383 [https://github.com/openego/eGon-data/issues/383]


	Use random seed from CLI parameters for CHP and society prognosis
functions
#351 [https://github.com/openego/eGon-data/issues/351]


	Changed demand.egon_schmidt_industrial_sites - table and merged table
(industrial_sites)
#423 [https://github.com/openego/eGon-data/issues/423]


	Replace ‘gas’ carrier with ‘CH4’ and ‘H2’ carriers
#436 [https://github.com/openego/eGon-data/issues/436]


	Adjust file path for industrial sites import
#418 [https://github.com/openego/eGon-data/issues/418]


	Rename columns subst_id to bus_id
#335 [https://github.com/openego/eGon-data/issues/335]


	Apply black and isort for all python scripts
#463 [https://github.com/openego/eGon-data/issues/463]


	Update deposit id for zenodo download
#498 [https://github.com/openego/eGon-data/issues/498]


	Add to etrago.setug.py the busmap table
#484 [https://github.com/openego/eGon-data/issues/484]


	Migrate dlr script to datasets
#508 [https://github.com/openego/eGon-data/issues/508]


	Migrate loadarea scripts to datasets
#525 [https://github.com/openego/eGon-data/issues/525]


	Migrate plot.py to dataset of district heating areas
#527 [https://github.com/openego/eGon-data/issues/527]


	Migrate substation scripts to datasets
#304 [https://github.com/openego/eGon-data/issues/304]


	Update deposit_id for zenodo download
#540 [https://github.com/openego/eGon-data/issues/540]


	Add household demand profiles to etrago table
#381 [https://github.com/openego/eGon-data/issues/381]


	Migrate zensus scripts to datasets
#422 [https://github.com/openego/eGon-data/issues/422]


	Add information on plz, city and federal state to data on mastr
without chp
#425 [https://github.com/openego/eGon-data/issues/425]


	Assign residential heat demands to osm buildings
#557 [https://github.com/openego/eGon-data/issues/557]


	Add foreign gas buses and adjust cross bording pipelines
#545 [https://github.com/openego/eGon-data/issues/545]


	Integrate fuel and CO2 costs for eGon2035 to scenario parameters
#549 [https://github.com/openego/eGon-data/issues/549]


	Aggregate generators and stores for CH4
#629 [https://github.com/openego/eGon-data/issues/629]


	Fill missing household data for populated cells
#431 [https://github.com/openego/eGon-data/issues/431]


	Fix RE potential areas outside of Germany by updating
the dataset. Import files from data bundle.
#592 [https://github.com/openego/eGon-data/issues/592]
#595 [https://github.com/openego/eGon-data/issues/595]


	Add DC lines from Germany to Sweden and Denmark
#611 [https://github.com/openego/eGon-data/issues/611]


	H2 demand is met from the H2_grid buses. In Addtion, it can be met
from the H2_saltcavern buses if a proximity criterion is fulfilled
#620 [https://github.com/openego/eGon-data/issues/620]


	Create H2 pipeline infrastructure for eGon100RE
#638 [https://github.com/openego/eGon-data/issues/638]


	Change refinement method for households types
#651 [https://github.com/openego/eGon-data/issues/#651]


	H2 feed in links are changed to non extendable
#653 [https://github.com/openego/eGon-data/issues/653]


	Remove the ‘_fixed’ suffix
#628 [https://github.com/openego/eGon-data/issues/628]


	Fill table demand.egon_demandregio_zensus_electricity after profile
allocation
#586 [https://github.com/openego/eGon-data/issues/586]


	Change method of building assignment
#663 [https://github.com/openego/eGon-data/issues/663]


	Create new OSM residential building table
#587 [https://github.com/openego/eGon-data/issues/587]


	Move python-operators out of pipeline
#644 [https://github.com/openego/eGon-data/issues/644]


	Add annualized investment costs to eTraGo tables
#672 [https://github.com/openego/eGon-data/issues/672]


	Improve modelling of NG and biomethane production
#678 [https://github.com/openego/eGon-data/issues/678]


	Unify carrier names for both scenarios
#575 [https://github.com/openego/eGon-data/issues/575]


	Add automatic filtering of gas data: Pipelines of length zero and gas
buses isolated of the grid are deleted.
#590 [https://github.com/openego/eGon-data/issues/590]


	Add gas data in neighbouring countries
#727 [https://github.com/openego/eGon-data/issues/727]


	Aggregate DSM components per substation
#661 [https://github.com/openego/eGon-data/issues/661]


	Aggregate NUTS3 industrial loads for CH4 and H2
#452 [https://github.com/openego/eGon-data/issues/452]


	Update OSM dataset from 2021-02-02 to 2022-01-01
#486 [https://github.com/openego/eGon-data/issues/486]


	Update deposit id to access v0.6 of the zenodo repository
#627 [https://github.com/openego/eGon-data/issues/627]


	Include electricity storages for eGon100RE scenario
#581 [https://github.com/openego/eGon-data/issues/581]


	Update deposit id to access v0.7 of the zenodo repository
#736 [https://github.com/openego/eGon-data/issues/736]


	Include simplified restrictions for H2 feed-in into CH4 grid
#790 [https://github.com/openego/eGon-data/issues/790]


	Update hh electricity profiles
#735 [https://github.com/openego/eGon-data/issues/735]


	Improve CH4 stores and productions aggregation by removing dedicated
task
#775 [https://github.com/openego/eGon-data/pull/775]


	Add CH4 stores in Germany for eGon100RE
#779 [https://github.com/openego/eGon-data/issues/779]


	Assigment of H2 and CH4 capacitites for pipelines in eGon100RE
#686 [https://github.com/openego/eGon-data/issues/686]


	Update deposit id to access v0.8 of the zenodo repository
#760 [https://github.com/openego/eGon-data/issues/760]


	Add primary key to table openstreetmap.osm_ways_with_segments
#787 [https://github.com/openego/eGon-data/issues/787]


	Update pypsa-eur-sec fork and store national demand time series
#402 [https://github.com/openego/eGon-data/issues/402]


	Move and merge the two assign_gas_bus_id functions to a central place
#797 [https://github.com/openego/eGon-data/issues/797]


	Add coordinates to non AC buses abroad in eGon100RE
#803 [https://github.com/openego/eGon-data/issues/803]


	Integrate additional industrial electricity demands for eGon100RE
#817 [https://github.com/openego/eGon-data/issues/817]


	Set non extendable gas components from p-e-s as so for eGon100RE
#877 [https://github.com/openego/eGon-data/issues/877]


	Integrate new data bundle using zenodo sandbox
#866 [https://github.com/openego/eGon-data/issues/866]


	Add noflex scenario for motorized individual travel
#821 [https://github.com/openego/eGon-data/issues/821]


	Allocate PV home batteries to mv grid districts
#749 [https://github.com/openego/eGon-data/issues/749]


	Add sanity checks for motorized individual travel
#820 [https://github.com/openego/eGon-data/issues/820]


	Parallelize sanity checks
#882 [https://github.com/openego/eGon-data/issues/882]


	Insert crossboarding gas pipeline with Germany in eGon100RE
#881 [https://github.com/openego/eGon-data/issues/881]


	Harmonize H2 carrier names in eGon100RE
#929 [https://github.com/openego/eGon-data/issues/929]


	Rename noflex to lowflex scenario for motorized individual travel
#921 [https://github.com/openego/eGon-data/issues/921]


	Update creation of heat demand timeseries
#857 [https://github.com/openego/eGon-data/issues/857]
#856 [https://github.com/openego/eGon-data/issues/856]


	Overwrite retrofitted_CH4pipeline-to-H2pipeline_share with pes result
#933 [https://github.com/openego/eGon-data/issues/933]


	Adjust H2 industry profiles abroad for eGon2035
#940 [https://github.com/openego/eGon-data/issues/940]


	Introduce carrier name ‘others’
#819 [https://github.com/openego/eGon-data/issues/819]


	Add rural heat pumps per medium voltage grid district
#987 [https://github.com/openego/eGon-data/issues/987]


	Add eGon2021 scenario to demandregio dataset
#1035 [https://github.com/openego/eGon-data/issues/1035]


	Update MaStR dataset
#519 [https://github.com/openego/eGon-data/issues/519]


	Add missing VOM costs for heat sector components
#942 [https://github.com/openego/eGon-data/issues/942]


	Add sanity checks for gas sector in eGon2035
#864 [https://github.com/openego/eGon-data/issues/864]


	Desaggregate industry demands to OSM areas and industrial sites
#1001 [https://github.com/openego/eGon-data/issues/1001]


	Add gas generator in Norway
#1074 [https://github.com/openego/eGon-data/issues/1074]


	SQLAlchemy engine objects created via egon.data.db.engine
are now cached on a per process basis, so only one engine is ever
created for a single process. This fixes issue #799 [https://github.com/openego/eGon-data/issues/799].


	Insert rural heat per supply technology
#1026 [https://github.com/openego/eGon-data/issues/1026]


	Insert lifetime for components from p-e-s in eGon100RE
#1073 [https://github.com/openego/eGon-data/issues/1073]


	Change hgv data source to use database
#1086 [https://github.com/openego/eGon-data/issues/1086]


	Change desposit ID for data_bundle download from zenodo sandbox
#1110 [https://github.com/openego/eGon-data/issues/1110]


	Use MaStR geocoding results for pv rooftop to buildings mapping workflow
#1095 [https://github.com/openego/eGon-data/issues/1095]


	Rename eMob MIT carrier names (use underscores)
#1105 [https://github.com/openego/eGon-data/issues/1105]






Bug Fixes


	Some dependencies have their upper versions restricted now. This is
mostly due to us not yet supporting Airflow 2.0 which means that it
will no longer work with certain packages, but we also won’t get and
upper version limit for those from Airflow because version 1.X is
unlikely to to get an update. So we had to make some implicit
dependencies explicit in order to give them them upper version limits.
Done via PR #692 [https://github.com/openego/eGon-data/pull/692] in order to fix issues #343 [https://github.com/openego/eGon-data/issues/343], #556 [https://github.com/openego/eGon-data/issues/556], #641 [https://github.com/openego/eGon-data/issues/641]
and #669 [https://github.com/openego/eGon-data/issues/669].


	Heat demand data import
#157 [https://github.com/openego/eGon-data/issues/157]


	Substation sequence
#171 [https://github.com/openego/eGon-data/issues/171]


	Adjust names of demandregios nuts3 regions according to nuts version
2016
#201 [https://github.com/openego/eGon-data/issues/201]


	Delete zensus buildings, apartments and households in unpopulated
cells
#202 [https://github.com/openego/eGon-data/issues/202]


	Fix input table of electrical-demands-zensus
#217 [https://github.com/openego/eGon-data/issues/217]


	Import heat demand raster files successively to fix import for
dataset==Everything
#204 [https://github.com/openego/eGon-data/issues/204]


	Replace wrong table name in SQL function used in substation extraction
#236 [https://github.com/openego/eGon-data/issues/236]


	Fix osmtgmod for osm data from 2021 by updating substation in
Garenfeld and set srid
#241 [https://github.com/openego/eGon-data/issues/241]
#258 [https://github.com/openego/eGon-data/issues/258]


	Adjust format of voltage levels in hvmv substation
#248 [https://github.com/openego/eGon-data/issues/248]


	Change order of osmtgmod tasks
#253 [https://github.com/openego/eGon-data/issues/253]


	Fix missing municipalities
#279 [https://github.com/openego/eGon-data/issues/279]


	Fix import of hydro power plants
#270 [https://github.com/openego/eGon-data/issues/270]


	Fix path to osm-file for osmtgmod_osm_import
#258 [https://github.com/openego/eGon-data/issues/258]


	Fix conflicting docker containers by setting a project name
#289 [https://github.com/openego/eGon-data/issues/289]


	Update task insert-nep-data for pandas version 1.3.0
#322 [https://github.com/openego/eGon-data/issues/322]


	Fix versioning conflict with mv_grid_districts
#340 [https://github.com/openego/eGon-data/issues/340]


	Set current working directory as java’s temp dir when executing
osmosis
#344 [https://github.com/openego/eGon-data/issues/344]


	Fix border gas voronoi polygons which had no bus_id
#362 [https://github.com/openego/eGon-data/issues/362]


	Add dependency from WeatherData to Vg250
#387 [https://github.com/openego/eGon-data/issues/387]


	Fix unnecessary columns in normal mode for inserting the gas
production
#390 [https://github.com/openego/eGon-data/issues/390]


	Add xlrd and openpyxl to installation setup
#400 [https://github.com/openego/eGon-data/issues/400]


	Store files of OSM, zensus and VG250 in working dir
#341 [https://github.com/openego/eGon-data/issues/341]


	Remove hard-coded slashes in file paths to ensure Windows
compatibility
#398 [https://github.com/openego/eGon-data/issues/398]


	Add missing dependency in pipeline.py
#412 [https://github.com/openego/eGon-data/issues/412]


	Add prefix egon to MV grid district tables
#349 [https://github.com/openego/eGon-data/issues/349]


	Bump MV grid district version no
#432 [https://github.com/openego/eGon-data/issues/432]


	Add curl to prerequisites in the docs
#440 [https://github.com/openego/eGon-data/issues/440]


	Replace NAN by 0 to avoid empty p_set column in DB
#414 [https://github.com/openego/eGon-data/issues/414]


	Exchange bus 0 and bus 1 in Power-to-H2 links
#458 [https://github.com/openego/eGon-data/issues/458]


	Fix missing cts demands for eGon2035
#511 [https://github.com/openego/eGon-data/issues/511]


	Add data_bundle to industrial_sites task dependencies
#468 [https://github.com/openego/eGon-data/issues/468]


	Lift geopandas minimum requirement to 0.10.0
#504 [https://github.com/openego/eGon-data/issues/504]


	Use inbuilt datetime package instead of pandas.datetime
#516 [https://github.com/openego/eGon-data/issues/516]


	Add missing ‘sign’ for CH4 and H2 loads
#538 [https://github.com/openego/eGon-data/issues/538]


	Delete only AC loads for eTraGo in electricity_demand_etrago
#535 [https://github.com/openego/eGon-data/issues/535]


	Filter target values by scenario name
#570 [https://github.com/openego/eGon-data/issues/570]


	Reduce number of timesteps of hh electricity demand profiles to 8760
#593 [https://github.com/openego/eGon-data/issues/593]


	Fix assignemnt of heat demand profiles at German borders
#585 [https://github.com/openego/eGon-data/issues/585]


	Change source for H2 steel tank storage to Danish Energy Agency
#605 [https://github.com/openego/eGon-data/issues/605]


	Change carrier name from ‘pv’ to ‘solar’ in eTraGo_generators
#617 [https://github.com/openego/eGon-data/issues/617]


	Assign “carrier” to transmission lines with no value in
grid.egon_etrago_line
#625 [https://github.com/openego/eGon-data/issues/625]


	Fix deleting from eTraGo tables
#613 [https://github.com/openego/eGon-data/issues/613]


	Fix positions of the foreign gas buses
#618 [https://github.com/openego/eGon-data/issues/618]


	Create and fill transfer_busses table in substation-dataset
#610 [https://github.com/openego/eGon-data/issues/610]


	H2 steel tanks are removed again from saltcavern storage
#621 [https://github.com/openego/eGon-data/issues/621]


	Timeseries not deleted from grid.etrago_generator_timeseries
#645 [https://github.com/openego/eGon-data/issues/645]


	Fix function to get scaled hh profiles
#674 [https://github.com/openego/eGon-data/issues/674]


	Change order of pypsa-eur-sec and scenario-capacities
#589 [https://github.com/openego/eGon-data/issues/589]


	Fix gas storages capacities
#676 [https://github.com/openego/eGon-data/issues/676]


	Distribute rural heat supply to residetntial and service demands
#679 [https://github.com/openego/eGon-data/issues/679]


	Fix time series creation for pv rooftop
#688 [https://github.com/openego/eGon-data/issues/688]


	Fix extraction of buildings without amenities
#693 [https://github.com/openego/eGon-data/issues/693]


	Assign DLR capacities to every transmission line
#683 [https://github.com/openego/eGon-data/issues/683]


	Fix solar ground mounted total installed capacity
#695 [https://github.com/openego/eGon-data/issues/695]


	Fix twisted number error residential demand
#704 [https://github.com/openego/eGon-data/issues/704]


	Fix industrial H2 and CH4 demand for eGon100RE scenario
#687 [https://github.com/openego/eGon-data/issues/687]


	Clean up “pipeline.py”
#562 [https://github.com/openego/eGon-data/issues/562]


	Assign timeseries data to crossborder generators ego2035
#724 [https://github.com/openego/eGon-data/issues/724]


	Add missing dataset dependencies in “pipeline.py”
#725 [https://github.com/openego/eGon-data/issues/725]


	Fix assignemnt of impedances (x) to etrago tables
#710 [https://github.com/openego/eGon-data/issues/710]


	Fix country_code attribution of two gas buses
#744 [https://github.com/openego/eGon-data/issues/744]


	Fix voronoi assignemnt for enclaves
#734 [https://github.com/openego/eGon-data/issues/734]


	Set lengths of non-pipeline links to 0
#741 [https://github.com/openego/eGon-data/issues/741]


	Change table name from boundaries.saltstructures_inspee to
boundaries.inspee_saltstructures
#746 [https://github.com/openego/eGon-data/issues/746]


	Add missing marginal costs for conventional generators in Germany
#722 [https://github.com/openego/eGon-data/issues/722]


	Fix carrier name for solar ground mounted in scenario parameters
#752 [https://github.com/openego/eGon-data/issues/752]


	Create rural_heat buses only for mv grid districts with heat load
#708 [https://github.com/openego/eGon-data/issues/708]


	Solve problem while creating generators series data egon2035
#758 [https://github.com/openego/eGon-data/issues/758]


	Correct wrong carrier name when assigning marginal costs
#766 [https://github.com/openego/eGon-data/issues/766]


	Use db.next_etrago_id in dsm and pv_rooftop dataset
#748 [https://github.com/openego/eGon-data/issues/748]


	Add missing dependency to heat_etrago
#771 [https://github.com/openego/eGon-data/issues/771]


	Fix country code of gas pipeline DE-AT
#813 [https://github.com/openego/eGon-data/issues/813]


	Fix distribution of resistive heaters in district heating grids
#783 [https://github.com/openego/eGon-data/issues/783]


	Fix missing reservoir and run_of_river power plants in eTraGo tables,
Modify fill_etrago_gen to also group generators from eGon100RE,
Use db.next_etrago_id in fill_etrago_gen
#798 [https://github.com/openego/eGon-data/issues/798]
#776 [https://github.com/openego/eGon-data/issues/776]


	Fix model load timeseries in motorized individual travel
#830 [https://github.com/openego/eGon-data/issues/830]


	Fix gas costs
#847 [https://github.com/openego/eGon-data/issues/847]


	Add imports that have been wrongly deleted
#849 [https://github.com/openego/eGon-data/issues/849]


	Fix final demand of heat demand timeseries
#781 [https://github.com/openego/eGon-data/issues/781]


	Add extendable batteries only to buses at substations
#852 [https://github.com/openego/eGon-data/issues/852]


	Move class definition for grid.egon_gas_voronoi out of etrago_setup
#888 [https://github.com/openego/eGon-data/issues/888]


	Temporarily set upper version limit for pandas
#829 [https://github.com/openego/eGon-data/issues/829]


	Change industrial gas load modelling
#871 [https://github.com/openego/eGon-data/issues/871]


	Delete eMob MIT data from eTraGo tables on init
#878 [https://github.com/openego/eGon-data/issues/878]


	Fix model id issues in DSM potentials for CTS and industry
#901 [https://github.com/openego/eGon-data/issues/901]


	Drop isolated buses and tranformers in eHV grid
#874 [https://github.com/openego/eGon-data/issues/874]


	Model gas turbines always as links
#914 [https://github.com/openego/eGon-data/issues/914]


	Drop era5 weather cell table using cascade
#909 [https://github.com/openego/eGon-data/issues/909]


	Remove drop of p_set and q_set for loads without timeserie
#971 [https://github.com/openego/eGon-data/issues/971]


	Delete gas bus with wrong country code
#958 [https://github.com/openego/eGon-data/issues/958]


	Overwrite capacities for conventional power plants with data from nep
list
#403 [https://github.com/openego/eGon-data/issues/403]


	Make gas grid links bidirectional
#1021 [https://github.com/openego/eGon-data/issues/1021]


	Correct gas technology costs for eGon100RE
#984 [https://github.com/openego/eGon-data/issues/984]


	Adjust p_nom and marginal cost for OCGT in eGon2035
#863 [https://github.com/openego/eGon-data/issues/863]


	Mismatch of building bus_ids from cts_heat_demand_building_share
and mapping table
#989 [https://github.com/openego/eGon-data/issues/989]


	Fix zensus weather cells mapping
#1031 [https://github.com/openego/eGon-data/issues/1031]


	Fix solar rooftop in test mode
#1055 [https://github.com/openego/eGon-data/issues/1055]


	Add missing filter for scenario name in chp expansion
#1015 [https://github.com/openego/eGon-data/issues/1015]


	Fix installed capacity per individual heat pump
#1058 [https://github.com/openego/eGon-data/issues/1058]


	Add missing gas turbines abroad
#1079 [https://github.com/openego/eGon-data/issues/1079]


	Fix gas generators abroad (marginal cost and e_nom_max)
#1075 [https://github.com/openego/eGon-data/issues/1075]


	Fix gas pipelines isolated of the German grid
#1081 [https://github.com/openego/eGon-data/issues/1081]


	Fix aggregation of DSM-components
#1069 [https://github.com/openego/eGon-data/issues/1069]


	Fix URL of TYNDP scenario dataset


	Automatically generated tasks now get unique task_ids.
Fixes issue #985 [https://github.com/openego/eGon-data/issues/985] via PR #986 [https://github.com/openego/eGon-data/pull/986].


	Adjust capcities of German CH4 stores
#1096 [https://github.com/openego/eGon-data/issues/1096]


	Fix faulty DSM time series
#1088 [https://github.com/openego/eGon-data/issues/1088]


	Set upper limit on commissioning date for units from MaStR
dataset
#1098 [https://github.com/openego/eGon-data/issues/1098]


	Fix conversion factor for CH4 loads abroad in eGon2035
#1104 [https://github.com/openego/eGon-data/issues/1104]


	Change structure of documentation in rtd
#11126 [https://github.com/openego/eGon-data/issues/1126]









          

      

      

    

  

    
      
          
            
  
egon.data


	
echo(message)

	





	airflow

	cli

	config

	dataset_configuration

	datasets
	DSM_cts_ind

	calculate_dlr

	ch4_prod

	ch4_storages

	chp_etrago

	database

	electrical_neighbours

	electricity_demand_etrago

	era5

	etrago_helpers

	etrago_setup

	fill_etrago_gen

	fix_ehv_subnetworks

	gas_areas

	gas_grid

	generate_voronoi

	heat_demand_europe

	industrial_gas_demand

	mastr

	mv_grid_districts

	renewable_feedin

	sanity_checks

	scenario_capacities

	society_prognosis

	substation_voronoi

	tyndp

	vg250_mv_grid_districts

	zensus_mv_grid_districts

	zensus_vg250

	chp
	match_nep

	small_chp





	data_bundle

	demandregio
	install_disaggregator





	district_heating_areas
	plot





	electricity_demand
	temporal





	electricity_demand_timeseries
	cts_buildings
	Example Query





	hh_buildings
	Example Query





	hh_profiles
	Helper functions





	mapping

	tools





	gas_neighbours
	eGon100RE
	Dependecies (pipeline)

	Resulting tables





	eGon2035

	gas_abroad





	heat_demand

	heat_demand_timeseries
	daily

	idp_pool

	service_sector





	heat_etrago
	hts_etrago

	power_to_heat





	heat_supply
	district_heating

	geothermal

	individual_heating





	hydrogen_etrago
	bus

	h2_grid

	h2_to_ch4

	power_to_h2

	storage





	industrial_sites

	industry
	temporal





	loadarea

	low_flex_scenario

	osm

	osm_buildings_streets

	osmtgmod
	substation





	power_etrago
	match_ocgt





	power_plants
	assign_weather_data

	conventional

	mastr

	pv_ground_mounted

	pv_rooftop

	pv_rooftop_buildings

	wind_farms

	wind_offshore





	pypsaeursec

	re_potential_areas

	saltcavern

	scenario_parameters
	parameters





	storages
	home_batteries

	pumped_hydro





	storages_etrago

	substation

	vg250

	zensus





	db

	metadata

	subprocess








          

      

      

    

  

    
      
          
            
  
airflow




          

      

      

    

  

    
      
          
            
  
cli

Module that contains the command line app.

Why does this file exist, and why not put this in __main__?


You might be tempted to import things from __main__ later, but that will
cause problems: the code will get executed twice:


	When you run python -megon.data python will execute
__main__.py as a script. That means there won’t be any
egon.data.__main__ in sys.modules.


	When you import __main__ it will get executed again (as a module) because
there’s no egon.data.__main__ in sys.modules.




Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration





	
main()

	






          

      

      

    

  

    
      
          
            
  
config


	
datasets(config_file=None)

	Return dataset configuration.


	Parameters

	config_file (str, optional) – Path of the dataset configuration file in YAML format. If not
supplied, a default configuration shipped with this package is
used.



	Returns

	dict – A nested dictionary containing the configuration as parsed from
the supplied file, or the default configuration if no file was
given.










	
paths(pid=None)

	Obtain configuration file paths.

If no pid is supplied, return the location of the standard
configuration file. If pid is the string “current”, the
path to the configuration file containing the configuration specific
to the currently running process, i.e. the configuration obtained by
overriding the values from the standard configuration file with the
values explicitly supplied when the currently running process was
invoked, is returned. If pid is the string “*” a list of all
configuration belonging to currently running egon-data processes
is returned. This can be used for error checking, because there
should only ever be one such file.






	
set_numexpr_threads()

	Sets maximum threads used by NumExpr


	Returns

	None










	
settings() → dict[str, dict[str, str]]

	Return a nested dictionary containing the configuration settings.

It’s a nested dictionary because the top level has command names as keys
and dictionaries as values where the second level dictionary has command
line switches applicable to the command as keys and the supplied values
as values.

So you would obtain the --database-name configuration setting used
by the current invocation of of egon-data via

settings()["egon-data"]["--database-name"]












          

      

      

    

  

    
      
          
            
  
dataset_configuration




          

      

      

    

  

    
      
          
            
  
datasets



	DSM_cts_ind

	calculate_dlr

	ch4_prod

	ch4_storages

	chp_etrago

	database

	electrical_neighbours

	electricity_demand_etrago

	era5

	etrago_helpers

	etrago_setup

	fill_etrago_gen

	fix_ehv_subnetworks

	gas_areas

	gas_grid

	generate_voronoi

	heat_demand_europe

	industrial_gas_demand

	mastr

	mv_grid_districts

	renewable_feedin

	sanity_checks

	scenario_capacities

	society_prognosis

	substation_voronoi

	tyndp

	vg250_mv_grid_districts

	zensus_mv_grid_districts

	zensus_vg250

	chp

	data_bundle

	demandregio

	district_heating_areas

	electricity_demand

	electricity_demand_timeseries

	gas_neighbours

	heat_demand

	heat_demand_timeseries

	heat_etrago

	heat_supply

	hydrogen_etrago

	industrial_sites

	industry

	loadarea

	low_flex_scenario

	osm

	osm_buildings_streets

	osmtgmod

	power_etrago

	power_plants

	pypsaeursec

	re_potential_areas

	saltcavern

	scenario_parameters

	storages

	storages_etrago

	substation

	vg250

	zensus





The API for configuring datasets.


	
class Dataset(name: 'str', version: 'str', dependencies: 'Iterable[Union[Dataset, Task]]' = (), tasks: 'Union[Tasks, TaskGraph]' = ())

	Bases: object


	
check_version(after_execution=())

	




	
dependencies = ()

	The first task(s) of this Dataset will be marked as
downstream of any of the listed dependencies. In case of bare
Task, a direct link will be created whereas for a
Dataset the link will be made to all of its last tasks.






	
name = None

	The name of the Dataset






	
tasks = ()

	The tasks of this Dataset. A TaskGraph will
automatically be converted to Tasks.






	
update(session)

	




	
version = None

	The Dataset’s version. Can be anything from a simple
semantic versioning string like “2.1.3”, to a more complex
string, like for example “2021-01-01.schleswig-holstein.0” for
OpenStreetMap data.
Note that the latter encodes the Dataset’s date, region
and a sequential number in case the data changes without the date
or region changing, for example due to implementation changes.










	
class Model(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
dependencies

	




	
epoch

	




	
id

	




	
name

	




	
version

	








	
Task = typing.Union[typing.Callable[[], NoneType], airflow.models.baseoperator.BaseOperator]

	A Task is an Airflow Operator or any
Callable taking no arguments and returning
None. Callables will be converted
to Operators by wrapping them in a
PythonOperator and setting the task_id
to the Callable’s
__name__, with underscores replaced with hyphens.
If the Callable’s __module__ [https://docs.python.org/3/reference/datamodel.html#index-34] attribute
contains the string "egon.data.datasets.", the
task_id is also prefixed with the module name,
followed by a dot and with "egon.data.datasets." removed.






	
TaskGraph = typing.Union[typing.Callable[[], NoneType], airflow.models.baseoperator.BaseOperator, typing.Set[ForwardRef('TaskGraph')], typing.Tuple[ForwardRef('TaskGraph'), ...]]

	A graph of tasks is, in its simplest form, just a single node, i.e. a
single Task. More complex graphs can be specified by nesting
sets and tuples of
TaskGraphs. A set of TaskGraphs means that they are unordered and can be
executed in parallel. A tuple specifies an implicit ordering so
a tuple of TaskGraphs will be executed
sequentially in the given order.






	
class Tasks(graph: 'TaskGraph')

	Bases: dict


	
graph = ()

	








	
prefix(o)

	




	
setup()

	Create the database structure for storing dataset information.








          

      

      

    

  

    
      
          
            
  
DSM_cts_ind

Currently, there are differences in the aggregated and individual DSM time
series. These are caused by the truncation of the values at zero.

The sum of the individual time series is a more accurate value than the
aggregated time series used so far and should replace it in the future. Since
the deviations are relatively small, a tolerance is currently accepted in the
sanity checks. See [#1120](https://github.com/openego/eGon-data/issues/1120)
for updates.


	
class DsmPotential(dependencies)

	Bases: egon.data.datasets.Dataset






	
class EgonDemandregioSitesIndElectricityDsmTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
application

	




	
bus

	




	
e_max

	




	
e_min

	




	
industrial_sites_id

	




	
p_max

	




	
p_min

	




	
p_set

	




	
scn_name

	




	
target = {'schema': 'demand', 'table': 'egon_demandregio_sites_ind_electricity_dsm_timeseries'}

	








	
class EgonEtragoElectricityCtsDsmTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus

	




	
e_max

	




	
e_min

	




	
p_max

	




	
p_min

	




	
p_set

	




	
scn_name

	




	
target = {'schema': 'demand', 'table': 'egon_etrago_electricity_cts_dsm_timeseries'}

	








	
class EgonOsmIndLoadCurvesIndividualDsmTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus

	




	
e_max

	




	
e_min

	




	
osm_id

	




	
p_max

	




	
p_min

	




	
p_set

	




	
scn_name

	




	
target = {'schema': 'demand', 'table': 'egon_osm_ind_load_curves_individual_dsm_timeseries'}

	








	
class EgonSitesIndLoadCurvesIndividualDsmTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus

	




	
e_max

	




	
e_min

	




	
p_max

	




	
p_min

	




	
p_set

	




	
scn_name

	




	
site_id

	




	
target = {'schema': 'demand', 'table': 'egon_sites_ind_load_curves_individual_dsm_timeseries'}

	








	
aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores)

	




	
calc_ind_site_timeseries(scenario)

	




	
calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm)

	
	Calculate DSM-potential per bus using the methods by Heitkoetter et. al.:

	https://doi.org/10.1016/j.adapen.2020.100001



	Parameters

	

	s_flex: float

	Feasability factor to account for socio-technical restrictions



	s_util: float

	Average annual utilisation rate



	s_inc: float

	Shiftable share of installed capacity up to which load can be
increased considering technical limitations



	s_dec: float

	Shiftable share of installed capacity up to which load can be
decreased considering technical limitations



	delta_t: int

	Maximum shift duration in hours



	dsm: DataFrame

	List of existing buses with DSM-potential including timeseries of
loads










	
create_dsm_components(con, p_max, p_min, e_max, e_min, dsm, export_aggregated=True)

	Create components representing DSM.
Parameters






	con :

	Connection to database



	p_max: DataFrame

	Timeseries identifying maximum load increase



	p_min: DataFrame

	Timeseries identifying maximum load decrease



	e_max: DataFrame

	Timeseries identifying maximum energy amount to be preponed



	e_min: DataFrame

	Timeseries identifying maximum energy amount to be postponed



	dsm: DataFrame

	List of existing buses with DSM-potential including timeseries of loads










	
create_table(df, table, engine=Engine(postgresql+psycopg2://egon:***@127.0.0.1:59734/egon-data))

	Create table






	
cts_data_import(cts_cool_vent_ac_share)

	Import CTS data necessary to identify DSM-potential.


	cts_share: float

	Share of cooling, ventilation and AC in CTS demand










	
data_export(dsm_buses, dsm_links, dsm_stores, carrier)

	Export new components to database.


	Parameters

	
	dsm_buses (DataFrame) – Buses representing locations of DSM-potential


	dsm_links (DataFrame) – Links connecting DSM-buses and DSM-stores


	dsm_stores (DataFrame) – Stores representing DSM-potential


	carrier (str) – Remark to be filled in column ‘carrier’ identifying DSM-potential













	
delete_dsm_entries(carrier)

	Deletes DSM-components from database if they already exist before creating
new ones.


	Parameters

	




	carrier: str

	Remark in column ‘carrier’ identifying DSM-potential














	
div_list(lst: list, div: float)

	




	
dsm_cts_ind(con=Engine(postgresql+psycopg2://egon:***@127.0.0.1:59734/egon-data), cts_cool_vent_ac_share=0.22, ind_vent_cool_share=0.039, ind_vent_share=0.017)

	Execute methodology to create and implement components for DSM considering
a) CTS per osm-area: combined potentials of cooling, ventilation and air


conditioning





	Industry per osm-are: combined potentials of cooling and ventilation


	Industrial Sites: potentials of ventilation in sites of





“Wirtschaftszweig” (WZ) 23





	Industrial Sites: potentials of sites specified by subsectors





identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG):
Paper, Recycled Paper, Pulp, Cement




Modelled using the methods by Heitkoetter et. al.:
https://doi.org/10.1016/j.adapen.2020.100001


	Parameters

	
	con – Connection to database


	cts_cool_vent_ac_share (float) – Share of cooling, ventilation and AC in CTS demand


	ind_vent_cool_share (float) – Share of cooling and ventilation in industry demand


	ind_vent_share (float) – Share of ventilation in industry demand in sites of WZ 23













	
dsm_cts_ind_individual(cts_cool_vent_ac_share=0.22, ind_vent_cool_share=0.039, ind_vent_share=0.017)

	Execute methodology to create and implement components for DSM considering
a) CTS per osm-area: combined potentials of cooling, ventilation and air


conditioning





	Industry per osm-are: combined potentials of cooling and ventilation


	Industrial Sites: potentials of ventilation in sites of





“Wirtschaftszweig” (WZ) 23





	Industrial Sites: potentials of sites specified by subsectors





identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG):
Paper, Recycled Paper, Pulp, Cement




Modelled using the methods by Heitkoetter et. al.:
https://doi.org/10.1016/j.adapen.2020.100001


	Parameters

	
	cts_cool_vent_ac_share (float) – Share of cooling, ventilation and AC in CTS demand


	ind_vent_cool_share (float) – Share of cooling and ventilation in industry demand


	ind_vent_share (float) – Share of ventilation in industry demand in sites of WZ 23













	
dsm_cts_ind_processing()

	




	
ind_osm_data_import(ind_vent_cool_share)

	
	Import industry data per osm-area necessary to identify DSM-potential.

	

	ind_share: float

	Share of considered application in industry demand










	
ind_osm_data_import_individual(ind_vent_cool_share)

	
	Import industry data per osm-area necessary to identify DSM-potential.

	

	ind_share: float

	Share of considered application in industry demand










	
ind_sites_data_import()

	Import industry sites data necessary to identify DSM-potential.






	
ind_sites_vent_data_import(ind_vent_share, wz)

	
	Import industry sites necessary to identify DSM-potential.

	

	ind_vent_share: float

	Share of considered application in industry demand



	wz: int

	Wirtschaftszweig to be considered within industry sites










	
ind_sites_vent_data_import_individual(ind_vent_share, wz)

	
	Import industry sites necessary to identify DSM-potential.

	

	ind_vent_share: float

	Share of considered application in industry demand



	wz: int

	Wirtschaftszweig to be considered within industry sites










	
relate_to_schmidt_sites(dsm)

	






          

      

      

    

  

    
      
          
            
  
calculate_dlr

Use the concept of dynamic line rating(DLR) to calculate temporal
depending capacity for HV transmission lines.
Inspired mainly on Planungsgrundsaetze-2020
Available at:
<https://www.transnetbw.de/files/pdf/netzentwicklung/netzplanungsgrundsaetze/UENB_PlGrS_Juli2020.pdf>


	
class Calculate_dlr(dependencies)

	Bases: egon.data.datasets.Dataset

Calculate DLR and assign values to each line in the db


	Parameters

	
	*No parameters required


	*Dependencies* –


	DataBundle


	Osmtgmod


	WeatherData


	FixEhvSubnetworks






	*Resulting tables* –


	grid.egon_etrago_line_timeseries is filled













	
name = 'dlr'

	




	
version = '0.0.1'

	








	
DLR_Regions(weather_info_path, regions_shape_path)

	Calculate DLR values for the given regions


	Parameters

	
	weather_info_path (str, mandatory) – path of the weather data downloaded from ERA5


	regions_shape_path (str, mandatory) – path to the shape file with the shape of the regions to analyze













	
dlr()

	Calculate DLR and assign values to each line in the db


	Parameters

	*No parameters required












          

      

      

    

  

    
      
          
            
  
ch4_prod

The central module containing code dealing with importing CH4 production data for eGon2035.

For eGon2035, the gas produced in Germany can be natural gas or biogas.
The source productions are geolocalised potentials described as PyPSA
generators. These generators are not extendable and their overall
production over the year is limited directly in eTraGo by values from
the Netzentwicklungsplan Gas 2020–2030 (36 TWh natural gas and 10 TWh
biogas), also stored in the table
scenario.egon_scenario_parameters.


	
class CH4Production(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the CH4 productions into the database for eGon2035

Insert the CH4 productions into the database for eGon2035 by using
the function import_gas_generators().


	Dependencies

	
	GasAreaseGon2035


	GasNodesAndPipes






	Resulting tables

	
	grid.egon_etrago_generator is extended









	
name = 'CH4Production'

	




	
version = '0.0.7'

	








	
import_gas_generators(scn_name='eGon2035')

	Inserts list of gas production units into the database

To insert the gas production units into the database, the following
steps are followed:



	cleaning of the database table grid.egon_etrago_generator of the
CH4 generators of the specific scenario (eGon2035),


	call of the functions load_NG_generators() and
load_biogas_generators() that respectively return
dataframes containing the natural- an bio-gas production units
in Germany,


	attribution of the bus_id to which each generator is connected
(call the function assign_gas_bus_id
from egon.data.db),


	aggregation of the CH4 productions with same properties at the
same bus. The properties that should be the same in order that
different generators are aggregated are:



	scenario


	carrier


	marginal cost: this parameter differentiates the natural gas
generators from the biogas generators,









	addition of the missing columns: scn_name, carrier and
generator_id,


	insertion of the generators into the database.








	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	None










	
load_NG_generators(scn_name)

	Define the fossil CH4 production units in Germany

This function reads from the SciGRID_gas dataset the fossil CH4
production units in Germany, adjusts and returns them.
Natural gas production reference: SciGRID_gas dataset (datasets/gas_data/data/IGGIELGN_Production.csv
downloaded in download_SciGRID_gas_data).
For more information on this data, refer to the
SciGRID_gas IGGIELGN documentation [https://zenodo.org/record/4767098].


	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	CH4_generators_list (pandas.DataFrame) – Dataframe containing the natural gas production units in Germany










	
load_biogas_generators(scn_name)

	Define the biogas production units in Germany

This function downloads the Biogaspartner Einspeiseatlas into
(datasets/gas_data/Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx),
reads the biogas production units in Germany data, adjusts and
returns them.
For more information on this data refer to the
Einspeiseatlas website [https://www.biogaspartner.de/einspeiseatlas/].


	Parameters

	scn_name (str) – Name of the scenario



	Returns

	CH4_generators_list (pandas.DataFrame) – Dataframe containing the biogas production units in Germany












          

      

      

    

  

    
      
          
            
  
ch4_storages

The central module containing all code dealing with importing gas stores

This module contains the functions to import the existing methane stores
in Germany and inserting them into the database. They are modelled as
PyPSA stores and are not extendable.


	
class CH4Storages(dependencies)

	Bases: egon.data.datasets.Dataset

Inserts the gas stores in Germany

Inserts the non extendable gas stores in Germany into the database
for the scnenarios eGon2035 and eGon100RE using the function
insert_ch4_storages().


	Dependencies

	
	GasAreaseGon2035


	GasAreaseGon2035


	GasNodesAndPipes






	Resulting tables

	
	grid.egon_etrago_store is extended









	
name = 'CH4Storages'

	




	
version = '0.0.3'

	








	
import_ch4_grid_capacity(scn_name)

	Defines the gas stores modelling the store capacity of the grid

Define dataframe containing the modelling of the grid storage
capacity. The whole storage capacity of the grid (130000 MWh,
estimation of the Bundesnetzagentur) is split uniformly between
all the German gas nodes of the grid (without consideration of the
capacities of the pipes).
In eGon100RE, the storage capacity of the grid is split between H2
and CH4 stores, with the same share as the pipeline capacities (value
calculated in the p-e-s run).


	Parameters

	
	scn_name (str) – Name of the scenario


	carrier (str) – Name of the carrier






	Returns

	Gas_storages_list – List of gas stores in Germany modelling the gas grid storage capacity










	
import_installed_ch4_storages(scn_name)

	Defines list of CH4 stores from the SciGRID_gas data

This function reads from the SciGRID_gas dataset the existing CH4
cavern stores in Germany, adjusts and returns them.
Caverns reference: SciGRID_gas dataset (datasets/gas_data/data/IGGIELGN_Storages.csv
downloaded in download_SciGRID_gas_data).
For more information on these data, refer to the
SciGRID_gas IGGIELGN documentation [https://zenodo.org/record/4767098].


	Parameters

	scn_name (str) – Name of the scenario



	Returns

	Gas_storages_list – Dataframe containing the CH4 cavern store units in Germany










	
insert_ch4_storages()

	Overall function to import non extendable gas stores in Germany

This function inserts the methane stores in Germany for the
scenarios eGon2035 and eGon100RE by using the function
insert_ch4_stores() and has no return.






	
insert_ch4_stores(scn_name)

	Inserts gas stores for specific scenario

Insert non extendable gas stores for specific scenario in Germany
by executing the following steps:



	Clean the database.


	For CH4 stores, call the functions
import_installed_ch4_storages() to get the CH4
cavern stores and import_ch4_grid_capacity() to
get the CH4 stores modelling the storage capacity of the
grid.


	Aggregate the stores attached to the same bus.


	Add the missing columns: store_id, scn_name, carrier, e_cyclic.


	Insert the stores into the database.








	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	None












          

      

      

    

  

    
      
          
            
  
chp_etrago

The central module containing all code dealing with chp for eTraGo.


	
class ChpEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Collect data related to combined heat and power plants for the eTraGo tool

This dataset collects data for combined heat and power plants and puts it into a format that
is needed for the transmission grid optimisation within the tool eTraGo.
This data is then writting into the corresponding tables that are read by eTraGo.


	Dependencies

	
	HeatEtrago


	Chp






	Resulting tables

	
	grid.egon_etrago_link is extended


	grid.egon_etrago_generator is extended









	
name = 'ChpEtrago'

	




	
version = '0.0.6'

	








	
insert()

	Insert combined heat and power plants into eTraGo tables.

Gas CHP plants are modeled as links to the gas grid,
biomass CHP plants (only in eGon2035) are modeled as generators


	Returns

	None.










	
insert_egon100re()

	Insert combined heat and power plants into eTraGo tables
for the eGon100RE scenario.


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
database


	
setup()

	Initialize the local database used for data processing.








          

      

      

    

  

    
      
          
            
  
electrical_neighbours

The central module containing all code dealing with electrical neighbours


	
class ElectricalNeighbours(dependencies)

	Bases: egon.data.datasets.Dataset

Add lines, loads, generation and storage for electrical neighbours

This dataset creates data for modelling the considered foreign countries and writes
that data into the database tables that can be read by the eTraGo tool.
Neighbouring countries are modelled in a lower spatial resolution, in general one node per
country is considered.
Defined load timeseries as well as generatrion and storage capacities are connected to these nodes.
The nodes are connected by AC and DC transmission lines with the German grid and other neighbouring countries
considering the grid topology from ENTSO-E.


	Dependencies

	
	Tyndp


	PypsaEurSec






	Resulting tables

	
	grid.egon_etrago_bus is extended


	grid.egon_etrago_link is extended


	grid.egon_etrago_line is extended


	grid.egon_etrago_load is extended


	grid.egon_etrago_load_timeseries is extended


	grid.egon_etrago_storage is extended


	grid.egon_etrago_generator is extended


	grid.egon_etrago_generator_timeseries is extended


	grid.egon_etrago_transformer is extended









	
name = 'ElectricalNeighbours'

	




	
version = '0.0.7'

	








	
buses(scenario, sources, targets)

	Insert central buses in foreign countries per scenario


	Parameters

	
	sources (dict) – List of dataset sources


	targets (dict) – List of dataset targets






	Returns

	central_buses (geoapndas.GeoDataFrame) – Buses in the center of foreign countries










	
calc_capacities()

	Calculates installed capacities from TYNDP data


	Returns

	pandas.DataFrame – Installed capacities per foreign node and energy carrier










	
central_buses_egon100(sources)

	Returns buses in the middle of foreign countries based on eGon100RE


	Parameters

	sources (dict) – List of sources



	Returns

	pandas.DataFrame – Buses in the center of foreign countries










	
central_transformer(scenario, sources, targets, central_buses, new_lines)

	Connect central foreign buses with different voltage levels


	Parameters

	
	sources (dict) – List of dataset sources


	targets (dict) – List of dataset targets


	central_buses (geopandas.GeoDataFrame) – Buses in the center of foreign countries


	new_lines (geopandas.GeoDataFrame) – Lines that connect cross-border lines to central bus per country






	Returns

	None.










	
choose_transformer(s_nom)

	Select transformer and parameters from existing data in the grid model

It is assumed that transformers in the foreign countries are not limiting
the electricity flow, so the capacitiy s_nom is set to the minimum sum
of attached AC-lines.
The electrical parameters are set according to already inserted
transformers in the grid model for Germany.


	Parameters

	s_nom (float) – Minimal sum of nominal power of lines at one side



	Returns

	
	int – Selected transformer nominal power


	float – Selected transformer nominal impedance















	
cross_border_lines(scenario, sources, targets, central_buses)

	Adds lines which connect border-crossing lines from osmtgmod
to the central buses in the corresponding neigbouring country


	Parameters

	
	sources (dict) – List of dataset sources


	targets (dict) – List of dataset targets


	central_buses (geopandas.GeoDataFrame) – Buses in the center of foreign countries






	Returns

	new_lines (geopandas.GeoDataFrame) – Lines that connect cross-border lines to central bus per country










	
foreign_dc_lines(scenario, sources, targets, central_buses)

	Insert DC lines to foreign countries manually


	Parameters

	
	sources (dict) – List of dataset sources


	targets (dict) – List of dataset targets


	central_buses (geopandas.GeoDataFrame) – Buses in the center of foreign countries






	Returns

	None.










	
get_cross_border_buses(scenario, sources)

	Returns buses from osmTGmod which are outside of Germany.


	Parameters

	sources (dict) – List of sources



	Returns

	geopandas.GeoDataFrame – Electricity buses outside of Germany










	
get_cross_border_lines(scenario, sources)

	Returns lines from osmTGmod which end or start outside of Germany.


	Parameters

	sources (dict) – List of sources



	Returns

	geopandas.GeoDataFrame – AC-lines outside of Germany










	
get_foreign_bus_id()

	Calculte the etrago bus id from Nodes of TYNDP based on the geometry


	Returns

	pandas.Series – List of mapped node_ids from TYNDP and etragos bus_id










	
get_map_buses()

	Returns a dictonary of foreign regions which are aggregated to another


	Returns

	Combination of aggregated regions










	
grid()

	Insert electrical grid compoenents for neighbouring countries


	Returns

	None.










	
insert_generators(capacities)

	Insert generators for foreign countries based on TYNDP-data


	Parameters

	capacities (pandas.DataFrame) – Installed capacities per foreign node and energy carrier



	Returns

	None.










	
insert_storage(capacities)

	Insert storage units for foreign countries based on TYNDP-data


	Parameters

	capacities (pandas.DataFrame) – Installed capacities per foreign node and energy carrier



	Returns

	None.










	
map_carriers_tyndp()

	Map carriers from TYNDP-data to carriers used in eGon
:returns: dict – Carrier from TYNDP and eGon






	
tyndp_demand()

	Copy load timeseries data from TYNDP 2020.
According to NEP 2021, the data for 2030 and 2040 is interpolated linearly.


	Returns

	None.










	
tyndp_generation()

	Insert data from TYNDP 2020 accordning to NEP 2021
Scenario ‘Distributed Energy’, linear interpolate between 2030 and 2040


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
electricity_demand_etrago

The central module containing code to merge data on electricity demand
and feed this data into the corresponding etraGo tables.


	
class ElectricalLoadEtrago(dependencies)

	Bases: egon.data.datasets.Dataset






	
demands_per_bus(scenario)

	Sum all electricity demand curves up per bus


	Parameters

	scenario (str) – Scenario name.



	Returns

	pandas.DataFrame – Aggregated electrical demand timeseries per bus










	
export_to_db()

	Prepare and export eTraGo-ready information of loads per bus and their
time series to the database


	Returns

	None.










	
store_national_profiles(ind_curves_sites, ind_curves_osm, cts_curves, hh_curves, scenario)

	Store electrical load timeseries aggregated for national level as an
input for pypsa-eur-sec


	Parameters

	
	ind_curves_sites (pd.DataFrame) – Industrial load timeseries for industrial sites per bus


	ind_curves_osm (pd.DataFrame) – Industrial load timeseries for industrial osm areas per bus


	cts_curves (pd.DataFrame) – CTS load curves per bus


	hh_curves (pd.DataFrame) – Household load curves per bus


	scenario (str) – Scenario name






	Returns

	None.












          

      

      

    

  

    
      
          
            
  
era5

Central module containing all code dealing with importing era5 weather data.


	
class EgonEra5Cells(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom

	




	
geom_point

	




	
w_id

	








	
class EgonRenewableFeedIn(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
carrier

	




	
feedin

	




	
w_id

	




	
weather_year

	








	
class WeatherData(dependencies)

	Bases: egon.data.datasets.Dataset

Download weather data from ERA5 using atlite

This dataset downloads weather data for the selected representative weather year.
This is done by applying functions from the atlite-tool.The downloaded wetaher data is stored into
files within the subfolder ‘cutouts’.


	Dependencies

	
	ScenarioParameters


	Vg250


	Setup






	Resulting tables

	
	supply.egon_era5_weather_cells is created and filled


	supply.egon_era5_renewable_feedin is created









	
name = 'Era5'

	




	
version = '0.0.2'

	








	
create_tables()

	




	
download_era5()

	Download weather data from era5


	Returns

	None.










	
import_cutout(boundary='Europe')

	Import weather data from cutout


	Returns

	cutout (atlite.cutout.Cutout) – Weather data stored in cutout










	
insert_weather_cells()

	Insert weather cells from era5 into database table


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
etrago_helpers

Module for repeated bus insertion tasks


	
copy_and_modify_buses(from_scn, to_scn, filter_dict)

	Copy buses from one scenario to a different scenario


	Parameters

	
	from_scn (str) – Source scenario.


	to_scn (str) – Target scenario.


	filter_dict (dict) – Filter buses according the information provided in this dict.













	
copy_and_modify_links(from_scn, to_scn, carriers, sector)

	Copy links from one scenario to a different one.


	Parameters

	
	from_scn (str) – Source scenario.


	to_scn (str) – Target scenario.


	carriers (list) – List of store carriers to copy.


	sector (str) – Name of sector (e.g. 'gas') to get cost information from.













	
copy_and_modify_stores(from_scn, to_scn, carriers, sector)

	Copy stores from one scenario to a different one.


	Parameters

	
	from_scn (str) – Source scenario.


	to_scn (str) – Target scenario.


	carriers (list) – List of store carriers to copy.


	sector (str) – Name of sector (e.g. 'gas') to get cost information from.













	
finalize_bus_insertion(bus_data, carrier, target, scenario='eGon2035')

	Finalize bus insertion to etrago table


	Parameters

	
	bus_data (geopandas.GeoDataFrame) – GeoDataFrame containing the processed bus data.


	carrier (str) – Name of the carrier.


	target (dict) – Target schema and table information.


	scenario (str, optional) – Name of the scenario The default is ‘eGon2035’.






	Returns

	bus_data (geopandas.GeoDataFrame) – GeoDataFrame containing the inserted bus data.










	
initialise_bus_insertion(carrier, target, scenario='eGon2035')

	Initialise bus insertion to etrago table


	Parameters

	
	carrier (str) – Name of the carrier.


	target (dict) – Target schema and table information.


	scenario (str, optional) – Name of the scenario The default is ‘eGon2035’.






	Returns

	gdf (geopandas.GeoDataFrame) – Empty GeoDataFrame to store buses to.












          

      

      

    

  

    
      
          
            
  
etrago_setup


	
class EgonPfHvBus(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
carrier

	




	
country

	




	
geom

	




	
scn_name

	




	
type

	




	
v_mag_pu_max

	




	
v_mag_pu_min

	




	
v_mag_pu_set

	




	
v_nom

	




	
x

	




	
y

	








	
class EgonPfHvBusTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
scn_name

	




	
v_mag_pu_set

	








	
class EgonPfHvBusmap(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus0

	




	
bus1

	




	
path_length

	




	
scn_name

	




	
version

	








	
class EgonPfHvCarrier(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
co2_emissions

	




	
color

	




	
commentary

	




	
name

	




	
nice_name

	








	
class EgonPfHvGenerator(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
build_year

	




	
bus

	




	
capital_cost

	




	
carrier

	




	
committable

	




	
control

	




	
down_time_before

	




	
e_nom_max

	




	
efficiency

	




	
generator_id

	




	
lifetime

	




	
marginal_cost

	




	
min_down_time

	




	
min_up_time

	




	
p_max_pu

	




	
p_min_pu

	




	
p_nom

	




	
p_nom_extendable

	




	
p_nom_max

	




	
p_nom_min

	




	
p_set

	




	
q_set

	




	
ramp_limit_down

	




	
ramp_limit_shut_down

	




	
ramp_limit_start_up

	




	
ramp_limit_up

	




	
scn_name

	




	
shut_down_cost

	




	
sign

	




	
start_up_cost

	




	
type

	




	
up_time_before

	








	
class EgonPfHvGeneratorTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
generator_id

	




	
marginal_cost

	




	
p_max_pu

	




	
p_min_pu

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
temp_id

	








	
class EgonPfHvLine(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
b

	




	
build_year

	




	
bus0

	




	
bus1

	




	
cables

	




	
capital_cost

	




	
carrier

	




	
g

	




	
geom

	




	
length

	




	
lifetime

	




	
line_id

	




	
num_parallel

	




	
r

	




	
s_max_pu

	




	
s_nom

	




	
s_nom_extendable

	




	
s_nom_max

	




	
s_nom_min

	




	
scn_name

	




	
terrain_factor

	




	
topo

	




	
type

	




	
v_ang_max

	




	
v_ang_min

	




	
v_nom

	




	
x

	








	
class EgonPfHvLineTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
line_id

	




	
s_max_pu

	




	
scn_name

	




	
temp_id

	








	
class EgonPfHvLink(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
build_year

	




	
bus0

	




	
bus1

	




	
capital_cost

	




	
carrier

	




	
efficiency

	




	
geom

	




	
length

	




	
lifetime

	




	
link_id

	




	
marginal_cost

	




	
p_max_pu

	




	
p_min_pu

	




	
p_nom

	




	
p_nom_extendable

	




	
p_nom_max

	




	
p_nom_min

	




	
p_set

	




	
scn_name

	




	
terrain_factor

	




	
topo

	




	
type

	








	
class EgonPfHvLinkTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
efficiency

	




	
link_id

	




	
marginal_cost

	




	
p_max_pu

	




	
p_min_pu

	




	
p_set

	




	
scn_name

	




	
temp_id

	








	
class EgonPfHvLoad(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus

	




	
carrier

	




	
load_id

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
sign

	




	
type

	








	
class EgonPfHvLoadTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
load_id

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
temp_id

	








	
class EgonPfHvStorage(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
build_year

	




	
bus

	




	
capital_cost

	




	
carrier

	




	
control

	




	
cyclic_state_of_charge

	




	
efficiency_dispatch

	




	
efficiency_store

	




	
inflow

	




	
lifetime

	




	
marginal_cost

	




	
max_hours

	




	
p_max_pu

	




	
p_min_pu

	




	
p_nom

	




	
p_nom_extendable

	




	
p_nom_max

	




	
p_nom_min

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
sign

	




	
standing_loss

	




	
state_of_charge_initial

	




	
state_of_charge_set

	




	
storage_id

	




	
type

	








	
class EgonPfHvStorageTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
inflow

	




	
marginal_cost

	




	
p_max_pu

	




	
p_min_pu

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
state_of_charge_set

	




	
storage_id

	




	
temp_id

	








	
class EgonPfHvStore(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
build_year

	




	
bus

	




	
capital_cost

	




	
carrier

	




	
e_cyclic

	




	
e_initial

	




	
e_max_pu

	




	
e_min_pu

	




	
e_nom

	




	
e_nom_extendable

	




	
e_nom_max

	




	
e_nom_min

	




	
lifetime

	




	
marginal_cost

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
sign

	




	
standing_loss

	




	
store_id

	




	
type

	








	
class EgonPfHvStoreTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
e_max_pu

	




	
e_min_pu

	




	
marginal_cost

	




	
p_set

	




	
q_set

	




	
scn_name

	




	
store_id

	




	
temp_id

	








	
class EgonPfHvTempResolution(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
resolution

	




	
start_time

	




	
temp_id

	




	
timesteps

	








	
class EgonPfHvTransformer(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
b

	




	
build_year

	




	
bus0

	




	
bus1

	




	
capital_cost

	




	
g

	




	
geom

	




	
lifetime

	




	
model

	




	
num_parallel

	




	
phase_shift

	




	
r

	




	
s_max_pu

	




	
s_nom

	




	
s_nom_extendable

	




	
s_nom_max

	




	
s_nom_min

	




	
scn_name

	




	
tap_position

	




	
tap_ratio

	




	
tap_side

	




	
topo

	




	
trafo_id

	




	
type

	




	
v_ang_max

	




	
v_ang_min

	




	
x

	








	
class EgonPfHvTransformerTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
s_max_pu

	




	
scn_name

	




	
temp_id

	




	
trafo_id

	








	
class EtragoSetup(dependencies)

	Bases: egon.data.datasets.Dataset






	
check_carriers()

	Check if any eTraGo table has carriers not included in the carrier table.


	Raises

	
	ValueError if carriers that are not defined in the carriers table are


	used in any eTraGo table.













	
create_tables()

	Create tables for eTraGo input data.
:returns: None.






	
insert_carriers()

	Insert list of carriers into eTraGo table


	Returns

	None.










	
link_geom_from_buses(df, scn_name)

	Add LineString geometry accoring to geometry of buses to links


	Parameters

	
	df (pandas.DataFrame) – List of eTraGo links with bus0 and bus1 but without topology


	scn_name (str) – Scenario name






	Returns

	gdf (geopandas.GeoDataFrame) – List of eTraGo links with bus0 and bus1 but with topology










	
temp_resolution()

	Insert temporal resolution for etrago


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
fill_etrago_gen


	
class Egon_etrago_gen(dependencies)

	Bases: egon.data.datasets.Dataset

Group generators based on Scenario, carrier and bus. Marginal costs are
assigned to generators without this data. Grouped generators
are sent to the egon_etrago_generator table and a timeseries is assigned
to the weather dependent ones.


	Dependencies

	
	PowerPlants


	WeatherData






	Resulting tables

	
	:py:class:`grid.egon_etrago_generator




<egon.data.datasets.etrago_setup.EgonPfHvGenerator>` is extended
* grid.egon_etrago_generator_timeseries is filled






	
name = 'etrago_generators'

	




	
version = '0.0.8'

	








	
add_marginal_costs(power_plants)

	




	
adjust_renew_feedin_table(renew_feedin, cfg)

	




	
consistency(data)

	




	
delete_previuos_gen(cfg, con, etrago_gen_orig, power_plants)

	




	
fill_etrago_gen_table(etrago_pp2, etrago_gen_orig, cfg, con)

	




	
fill_etrago_gen_time_table(etrago_pp, power_plants, renew_feedin, pp_time, cfg, con)

	




	
fill_etrago_generators()

	




	
group_power_plants(power_plants, renew_feedin, etrago_gen_orig, cfg)

	




	
load_tables(con, cfg)

	




	
numpy_nan(data)

	




	
power_timeser(weather_data)

	




	
set_timeseries(power_plants, renew_feedin)

	






          

      

      

    

  

    
      
          
            
  
fix_ehv_subnetworks

The central module containing all code dealing with fixing ehv subnetworks


	
class FixEhvSubnetworks(dependencies)

	Bases: egon.data.datasets.Dataset

Manually fix grid topology in the extra high voltage grid to avoid subnetworks

This dataset includes fixes for the topology of the German extra high voltage grid.
The initial grid topology from openstreetmap resp. osmTGmod includes some issues,  eg. because of
incomplete data. Thsi dataset does not fix all those issues, but deals only with subnetworks
in the extra high voltage grid that would result into problems in the grid optimisation.


	Dependencies

	
	Osmtgmod






	Resulting tables

	
	grid.egon_etrago_bus is updated


	grid.egon_etrago_line is updated


	grid.egon_etrago_transformer is updated









	
name = 'FixEhvSubnetworks'

	




	
version = '0.0.2'

	








	
add_bus(x, y, v_nom, scn_name)

	




	
add_line(x0, y0, x1, y1, v_nom, scn_name, cables)

	




	
add_trafo(x, y, v_nom0, v_nom1, scn_name, n=1)

	




	
drop_bus(x, y, v_nom, scn_name)

	




	
drop_line(x0, y0, x1, y1, v_nom, scn_name)

	




	
drop_trafo(x, y, v_nom0, v_nom1, scn_name)

	




	
fix_subnetworks(scn_name)

	




	
run()

	




	
select_bus_id(x, y, v_nom, scn_name, carrier)

	






          

      

      

    

  

    
      
          
            
  
gas_areas

The central module containing code to create CH4 and H2 voronoi polygons


	
class EgonPfHvGasVoronoi(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Class definition of table grid.egon_gas_voronoi


	
bus_id

	Bus of the corresponding area






	
carrier

	Gas carrier of the voronoi area (“CH4”, “H2_grid” or “H2_saltcavern”)






	
geom

	Geometry of the corresponding area






	
scn_name

	Name of the scenario










	
class GasAreaseGon100RE(dependencies)

	Bases: egon.data.datasets.Dataset

Create the gas voronoi table and the gas voronoi areas for eGon100RE


	Dependencies

	
	EtragoSetup


	HydrogenBusEtrago


	HydrogenGridEtrago


	Vg250


	GasNodesAndPipes


	GasAreaseGon2035






	Resulting tables

	
	EgonPfHvGasVoronoi









	
name = 'GasAreaseGon100RE'

	




	
version = '0.0.1'

	








	
class GasAreaseGon2035(dependencies)

	Bases: egon.data.datasets.Dataset

Create the gas voronoi table and the gas voronoi areas for eGon2035


	Dependencies

	
	EtragoSetup


	HydrogenBusEtrago


	Vg250


	GasNodesAndPipes






	Resulting tables

	
	EgonPfHvGasVoronoi









	
name = 'GasAreaseGon2035'

	




	
version = '0.0.2'

	








	
create_gas_voronoi_table()

	Create gas voronoi table






	
create_voronoi(scn_name, carrier)

	Create voronoi polygons for specified carrier in specified scenario.


	Parameters

	
	scn_name (str) – Name of the scenario


	carrier (str) – Name of the carrier













	
voronoi_egon100RE()

	Create voronoi polygons for all gas carriers in eGon100RE scenario






	
voronoi_egon2035()

	Create voronoi polygons for all gas carriers in eGon2035 scenario








          

      

      

    

  

    
      
          
            
  
gas_grid

The module contains code used to insert the methane grid into the database

The central module contains all code dealing with the import of data
from SciGRID_gas (IGGIELGN dataset) and inserting the CH4 buses and links
into the database for the scenarios eGon2035 and eGon100RE.

The SciGRID_gas data downloaded with download_SciGRID_gas_data()
into the folder ./datasets/gas_data/data is also used by other modules.

In this module, only the IGGIELGN_Nodes and IGGIELGN_PipeSegments csv files
are used in the function insert_gas_data() that inserts the CH4
buses and links, which for the case of gas represent pipelines, into the
database.


	
class GasNodesAndPipes(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the CH4 buses and links into the database.

Insert the CH4 buses and links, which for the case of gas represent
pipelines, into the database for the scenarios eGon2035 and eGon100RE
with the functions insert_gas_data() and insert_gas_data_eGon100RE().


	Dependencies

	
	DataBundle


	ElectricalNeighbours


	Osmtgmod


	ScenarioParameters


	EtragoSetup (more specifically the create_tables task)






	Resulting tables

	
	grid.egon_etrago_bus is extended


	grid.egon_etrago_link is extended









	
name = 'GasNodesAndPipes'

	




	
version = '0.0.9'

	








	
ch4_nodes_number_G(gas_nodes_list)

	Return the number of CH4 buses in Germany


	Parameters

	gas_nodes_list (pandas.DataFrame) – Dataframe containing the gas nodes in Europe



	Returns

	N_ch4_nodes_G (int) – Number of CH4 buses in Germany










	
define_gas_buses_abroad(scn_name='eGon2035')

	Define central CH4 buses in foreign countries for eGon2035

For the scenario eGon2035, define central CH4 buses in foreign
countries. The considered foreign countries are the direct
neighbouring countries, with the addition of Russia that is
considered as a source of fossil CH4.
Therefore, the following steps are executed:



	Definition of the foreign buses with the function
central_buses_egon100 from
the module electrical_neighbours


	Removal of the superfluous buses in order to have only one bus
in each neighbouring country


	Removal of the irrelevant columns


	Addition of the missing information: scn_name and carrier


	Attribution of an id to each bus








	Parameters

	scn_name (str) – Name of the scenario



	Returns

	gdf_abroad_buses (pandas.DataFrame) – Dataframe containing the gas buses in the neighbouring countries
and one in the center of Germany in test mode










	
define_gas_nodes_list()

	Define list of CH4 buses from SciGRID_gas IGGIELGN data

The CH4 nodes are modelled as buses. Therefore the SciGRID_gas nodes
are read from the IGGIELGN_Nodes csv file previously downloaded in the
function download_SciGRID_gas_data(), corrected (erroneous country),
and returned in a dataframe.


	Returns

	gas_nodes_list (pandas.DataFrame) – Dataframe containing the gas nodes in Europe










	
define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list, scn_name='eGon2035')

	Define gas pipelines in Germany from SciGRID_gas IGGIELGN data

The gas pipelines, modelled as PyPSA links are read from the IGGIELGN_PipeSegments
csv file previously downloded in the function download_SciGRID_gas_data().

The capacities of the pipelines are determined by the correspondance
table given by the parameters for the classification of gas pipelines
in Electricity, heat, and gas sector data for modeling the German system [https://www.econstor.eu/bitstream/10419/173388/1/1011162628.pdf]
related to the pipeline diameter given in the SciGRID_gas dataset.


	The manual corrections allow to:

	
	Delete gas pipelines disconnected of the rest of the gas grid


	Connect one pipeline (also connected to Norway) disconnected of
the rest of the gas grid


	Correct countries of some erroneous pipelines









	Parameters

	
	gas_nodes_list (dataframe) – Dataframe containing the gas nodes in Europe


	abroad_gas_nodes_list (dataframe) – Dataframe containing the gas buses in the neighbouring countries
and one in the center of Germany in test mode


	scn_name (str) – Name of the scenario






	Returns

	gas_pipelines_list (pandas.DataFrame) – Dataframe containing the gas pipelines in Germany










	
download_SciGRID_gas_data()

	Download SciGRID_gas IGGIELGN data from Zenodo

The following data for CH4 is downloaded into the folder
./datasets/gas_data/data:



	Buses (file IGGIELGN_Nodes.csv),


	Pipelines (file IGGIELGN_PipeSegments.csv),


	Productions (file IGGIELGN_Productions.csv),


	Storages (file IGGIELGN_Storages.csv),


	LNG terminals (file IGGIELGN_LNGs.csv).







For more information on this data refer, to the
SciGRID_gas IGGIELGN documentation [https://zenodo.org/record/4767098].


	Returns

	None










	
insert_CH4_nodes_list(gas_nodes_list)

	Insert list of German CH4 nodes into the database for eGon2035

Insert the list of German CH4 nodes into the database by executing
the following steps:



	Receive the buses as parameter (from SciGRID_gas IGGIELGN data)


	Add the missing information: scn_name and carrier


	Clean the database table grid.egon_etrago_bus of the
CH4 buses of the specific scenario (eGon2035) in Germany


	Insert the buses in the table grid.egon_etrago_bus








	Parameters

	gas_nodes_list (pandas.DataFrame) – Dataframe containing the gas nodes in Europe



	Returns

	None










	
insert_gas_buses_abroad(scn_name='eGon2035')

	Insert CH4 buses in neighbouring countries into database for eGon2035



	Definition of the CH4 buses abroad with the function
define_gas_buses_abroad()


	Cleaning of the database table grid.egon_etrago_bus of the
foreign CH4 buses of the specific scenario (eGon2035)


	Insertion of the neighbouring buses into the table grid.egon_etrago_bus.








	Parameters

	scn_name (str) – Name of the scenario



	Returns

	gdf_abroad_buses (dataframe) – Dataframe containing the CH4 buses in the neighbouring countries
and one in the center of Germany in test mode










	
insert_gas_data()

	Function for importing methane data for eGon2035

This function imports the methane data (buses and pipelines) for
eGon2035, by executing the following steps:



	Download the SciGRID_gas datasets with the function download_SciGRID_gas_data()


	Define CH4 buses with the function define_gas_nodes_list()


	Insert the CH4 buses in Germany into the database with the
function insert_CH4_nodes_list()


	Insert the CH4 buses abroad into the database with the function
insert_gas_buses_abroad()


	Insert the CH4 links representing the CH4 pipeline into the
database with the function insert_gas_pipeline_list()


	Remove the isolated CH4 buses directly from the database using
the function remove_isolated_gas_buses()








	Returns

	None










	
insert_gas_data_eGon100RE()

	Function for importing methane data for eGon100RE

This function imports the methane data (buses and pipelines) for
eGon100RE, by copying the CH4 buses from the eGon2035 scenario using
the function copy_and_modify_buses
from the module etrago_helpers. The methane
pipelines are also copied and their capacities are adapted: one
share of the methane grid is retroffited into an hydrogen grid, so
the methane pipelines nominal capacities are reduced from this share
(calculated in the pyspa-eur-sec run).


	Returns

	None










	
insert_gas_pipeline_list(gas_pipelines_list, scn_name='eGon2035')

	Insert list of gas pipelines into the database

Receive as argument a list of gas pipelines and insert them into the
database after cleaning it.


	Parameters

	
	gas_pipelines_list (pandas.DataFrame) – Dataframe containing the gas pipelines in Germany


	scn_name (str) – Name of the scenario






	Returns

	None










	
remove_isolated_gas_buses()

	Delete CH4 buses which are disconnected of the CH4 grid for the eGon2035 scenario


	Returns

	None












          

      

      

    

  

    
      
          
            
  
generate_voronoi

The central module containing code to create CH4 and H2 voronoi polygones


	
get_voronoi_geodataframe(buses, boundary)

	Create voronoi polygons for the passed buses within the boundaries.


	Parameters

	
	buses (geopandas.GeoDataFrame) – Buses to create the voronois for.


	boundary (Multipolygon, Polygon) – Bounding box for the voronoi generation.






	Returns

	gdf (geopandas.GeoDataFrame) – GeoDataFrame containting the bus_ids and the respective voronoi
polygons.












          

      

      

    

  

    
      
          
            
  
heat_demand_europe

Central module containing all code downloading hotmaps heat demand data.

The 2050 national heat demand of the Hotmaps current policy scenario for
buildings are used in the eGon100RE scenario for assumptions on national
heating demands in European countries, but not for Germany.
The data are downloaded to be used in the PyPSA-Eur-Sec scenario generator
(forked into open_ego).


	
class HeatDemandEurope(dependencies)

	Bases: egon.data.datasets.Dataset

Downloads annual heat demands for European countries from hotmaps

This dataset downloads annual heat demands for all European countries for the year 2050 from
hotmaps and stores the results into files. These are later used by pypsa-eur-sec.


	Dependencies

	
	Setup









	
name = 'heat-demands-europe'

	




	
version = 'scen_current_building_demand.csv_hotmaps.0.1'

	








	
download()

	Download Hotmaps current policy scenario for building heat demands.

The downloaded data contain residential and non-residential-sector
national heat demands for different years.


	Parameters

	None



	Returns

	None












          

      

      

    

  

    
      
          
            
  
industrial_gas_demand

The central module containing code dealing with gas industrial demand

In this module, the functions to import the industrial hydrogen and
methane demands from the opendata.ffe database and to insert them into
the database after modification are to be found.


	
class IndustrialGasDemand(dependencies)

	Bases: egon.data.datasets.Dataset

Download the industrial gas demands from the opendata.ffe database

Data is downloaded to the folder ./datasets/gas_data/demand using
the function download_industrial_gas_demand() and no dataset is resulting.


	Dependencies

	
	ScenarioParameters









	
name = 'IndustrialGasDemand'

	




	
version = '0.0.4'

	








	
class IndustrialGasDemandeGon100RE(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the hourly resolved industrial gas demands into the database for eGon100RE

Insert the industrial methane and hydrogen demands and their
associated time series for the scenario eGon100RE by executing the
function insert_industrial_gas_demand_egon100RE().


	Dependencies

	
	GasAreaseGon100RE


	GasNodesAndPipes


	HydrogenBusEtrago


	IndustrialGasDemand






	Resulting tables

	
	grid.egon_etrago_load is extended


	grid.egon_etrago_load_timeseries is extended









	
name = 'IndustrialGasDemandeGon100RE'

	




	
version = '0.0.3'

	








	
class IndustrialGasDemandeGon2035(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the hourly resolved industrial gas demands into the database for eGon2035

Insert the industrial methane and hydrogen demands and their
associated time series for the scenario eGon2035 by executing the
function insert_industrial_gas_demand_egon2035().


	Dependencies

	
	GasAreaseGon2035


	GasNodesAndPipes


	HydrogenBusEtrago


	IndustrialGasDemand






	Resulting tables

	
	grid.egon_etrago_load is extended


	grid.egon_etrago_load_timeseries is extended









	
name = 'IndustrialGasDemandeGon2035'

	




	
version = '0.0.3'

	








	
delete_old_entries(scn_name)

	Delete CH4 and H2 loads and load time series for the specified scenario


	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	None










	
download_industrial_gas_demand()

	Download the industrial gas demand data from opendata.ffe database

The industrial demands for hydrogen and methane are downloaded in
the folder ./datasets/gas_data/demand
These loads are hourly and NUTS3-level resolved. For more
information on these data, refer to the Extremos project documentation [https://opendata.ffe.de/project/extremos/].


	Returns

	None










	
insert_industrial_gas_demand_egon100RE()

	Insert industrial gas demands into the database for eGon100RE

Insert the industrial CH4 and H2 demands and their associated time
series into the database for the eGon100RE scenario. The data,
previously downloaded in download_industrial_gas_demand()
are adapted by executing the following steps:



	Clean the database with the function delete_old_entries()


	Read and prepare the CH4 and the H2 industrial demands and their
associated time series in Germany with the function read_and_process_demand()


	Identify and adjust the total industrial CH4 and H2 loads for Germany
generated by PyPSA-Eur-Sec



	For CH4, the time series used is the one from H2, because
the industrial CH4 demand in the opendata.ffe database is 0


	In test mode, the total values are obtained by
evaluating the share of H2 demand in the test region
(NUTS1: DEF, Schleswig-Holstein) with respect to the H2
demand in full Germany model (NUTS0: DE). This task has been
outsourced to save processing cost.









	Aggregate the demands with the same properties at the same gas bus


	Insert the loads into the database by executing insert_new_entries()


	Insert the time series associated to the loads into the database
by executing insert_industrial_gas_demand_time_series()








	Returns

	None










	
insert_industrial_gas_demand_egon2035()

	Insert industrial gas demands into the database for eGon2035

Insert the industrial CH4 and H2 demands and their associated time
series into the database for the eGon2035 scenario. The data
previously downloaded in download_industrial_gas_demand()
is adjusted by executing the following steps:



	Clean the database with the function delete_old_entries()


	Read and prepare the CH4 and the H2 industrial demands and their
associated time series in Germany with the function read_and_process_demand()


	Aggregate the demands with the same properties at the same gas bus


	Insert the loads into the database by executing insert_new_entries()


	Insert the time series associated to the loads into the database
by executing insert_industrial_gas_demand_time_series()








	Returns

	None










	
insert_industrial_gas_demand_time_series(egon_etrago_load_gas)

	Insert list of industrial gas demand time series (one per NUTS3 region)

These loads are hourly and on NUTS3 level resolved.


	Parameters

	industrial_gas_demand (pandas.DataFrame) – Dataframe containing the loads that have been inserted into
the database and whose time series will be inserted into the
database.



	Returns

	None










	
insert_new_entries(industrial_gas_demand, scn_name)

	Insert industrial gas loads into the database

This function prepares and imports the industrial gas loads by
executing the following steps:



	Attribution of an id to each load in the list received as parameter


	Deletion of the column containing the time series (they will be
inserted in another table (grid.egon_etrago_load_timeseries) in
the insert_industrial_gas_demand_time_series())


	Insertion of the loads into the database


	Return of the dataframe still containing the time series columns








	Parameters

	
	industrial_gas_demand (pandas.DataFrame) – Load data to insert (containing the time series)


	scn_name (str) – Name of the scenario.






	Returns

	industrial_gas_demand (pandas.DataFrame) – Dataframe containing the loads that have been inserted in
the database with their time series










	
read_and_process_demand(scn_name='eGon2035', carrier=None, grid_carrier=None)

	Assign the industrial gas demand in Germany to buses

This function prepares and returns the industrial gas demand time
series for CH4 or H2 and for a specific scenario by executing the
following steps:



	Read the industrial demand time series in Germany with the
function read_industrial_demand()


	Attribute the bus_id to which each load and it associated time
series is associated by calling the function assign_gas_bus_id
from egon.data.db


	Adjust the columns: add “carrier” and remove useless ones








	Parameters

	
	scn_name (str) – Name of the scenario


	carrier (str) – Name of the carrier, the demand should hold


	grid_carrier (str) – Carrier name of the buses, the demand should be assigned to






	Returns

	industrial_demand (pandas.DataFrame) – Dataframe containing the industrial demand in Germany










	
read_industrial_demand(scn_name, carrier)

	Read the industrial gas demand data in Germany

This function reads the methane or hydrogen industrial demand time
series previously downloaded in download_industrial_gas_demand() for
the scenarios eGon2035 or eGon100RE.


	Parameters

	
	scn_name (str) – Name of the scenario


	carrier (str) – Name of the gas carrier






	Returns

	df (pandas.DataFrame) – Dataframe containing the industrial gas demand time series












          

      

      

    

  

    
      
          
            
  
mastr

Download Marktstammdatenregister (MaStR) datasets unit registry.
It incorporates two different datasets:

Dump 2021-05-03
* Source: https://sandbox.zenodo.org/record/808086
* Used technologies: PV plants, wind turbines, biomass, hydro plants,


combustion, nuclear, gsgk, storage





	Data is further processed in dataset
egon.data.datasets.power_plants.PowerPlants




Dump 2022-11-17
* Source: https://sandbox.zenodo.org/record/1132839
* Used technologies: PV plants, wind turbines, biomass, hydro plants
* Data is further processed in module


egon.data.datasets.power_plants.mastr PowerPlants




Todo: Finish docstring
TBD


	
download_mastr_data()

	Download MaStR data from Zenodo








          

      

      

    

  

    
      
          
            
  
mv_grid_districts

Medium-voltage grid districts describe the area supplied by one MV grid

Medium-voltage grid districts are defined by one polygon that represents the
supply area. Each MV grid district is connected to the HV grid via a single
substation.

The methods used for identifying the MV grid districts are heavily inspired
by Hülk et al. (2017) [https://somaesthetics.aau.dk/index.php/sepm/article/view/1833/1531]
(section 2.3), but the implementation differs in detail.
The main difference is that direct adjacency is preferred over proximity.
For polygons of municipalities
without a substation inside, it is iteratively checked for direct adjacent
other polygons that have a substation inside. Speaking visually, a MV grid
district grows around a polygon with a substation inside.

The grid districts are identified using three data sources


	Polygons of municipalities (Vg250GemClean)


	HV-MV substations (EgonHvmvSubstation)


	HV-MV substation voronoi polygons (EgonHvmvSubstationVoronoi)




Fundamentally, it is assumed that grid districts (supply areas) often go
along borders of administrative units, in particular along the borders of
municipalities due to the concession levy.
Furthermore, it is assumed that one grid district is supplied via a single
substation and that locations of substations and grid districts are designed
for aiming least lengths of grid line and cables.

With these assumptions, the three data sources from above are processed as
follows:


	Find the number of substations inside each municipality


	Split municipalities with more than one substation inside
* Cut polygons of municipalities with voronoi polygons of respective


substations





	Assign resulting municipality polygon fragments to nearest substation






	Assign municipalities without a single substation to nearest substation in
the neighborhood


	Merge all municipality polygons and parts of municipality polygons to a
single polygon grouped by the assigned substation




For finding the nearest substation, as already said, direct adjacency is
preferred over closest distance. This means, the nearest substation does not
necessarily have to be the closest substation in the sense of beeline distance.
But it is the substation definitely located in a neighboring polygon. This
prevents the algorithm to find solutions where a MV grid districts consists of
multi-polygons with some space in between.
Nevertheless, beeline distance still plays an important role, as the algorithm
acts in two steps


	Iteratively look for neighboring polygons until there are no further
polygons


	Find a polygon to assign to by minimum beeline distance




The second step is required in order to cover edge cases, such as islands.

For understanding how this is implemented into separate functions, please
see define_mv_grid_districts().


	
class HvmvSubstPerMunicipality(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
ags_0

	




	
area_ha

	




	
bem

	




	
bez

	




	
count_hole

	




	
gen

	




	
geometry

	




	
id

	




	
is_hole

	




	
nuts

	




	
old_id

	




	
path

	




	
rs_0

	




	
subst_count

	








	
class MvGridDistricts(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area

	




	
bus_id

	




	
geom

	








	
class MvGridDistrictsDissolved(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area

	




	
bus_id

	




	
geom

	




	
id

	








	
class Vg250GemClean(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
ags_0

	




	
area_ha

	




	
bem

	




	
bez

	




	
count_hole

	




	
gen

	




	
geometry

	




	
id

	




	
is_hole

	




	
nuts

	




	
old_id

	




	
path

	




	
rs_0

	








	
class VoronoiMunicipalityCuts(**kwargs)

	Bases: egon.data.datasets.mv_grid_districts.VoronoiMunicipalityCutsBase, sqlalchemy.ext.declarative.api.Base


	
ags_0

	




	
bus_id

	




	
geom

	




	
geom_sub

	




	
id

	




	
municipality_id

	




	
subst_count

	




	
voronoi_id

	








	
class VoronoiMunicipalityCutsAssigned(**kwargs)

	Bases: egon.data.datasets.mv_grid_districts.VoronoiMunicipalityCutsBase, sqlalchemy.ext.declarative.api.Base


	
ags_0

	




	
bus_id

	




	
geom

	




	
geom_sub

	




	
id

	




	
municipality_id

	




	
subst_count

	




	
temp_id

	




	
voronoi_id

	








	
class VoronoiMunicipalityCutsBase

	Bases: object


	
ags_0 = Column(None, String(), table=None)

	




	
bus_id = Column(None, Integer(), table=None)

	




	
geom = Column(None, Geometry(geometry_type='POLYGON', srid=3035), table=None)

	




	
geom_sub = Column(None, Geometry(geometry_type='POINT', srid=3035), table=None)

	




	
municipality_id = Column(None, Integer(), table=None)

	




	
subst_count = Column(None, Integer(), table=None)

	




	
voronoi_id = Column(None, Integer(), table=None)

	








	
assign_substation_municipality_fragments(with_substation, without_substation, strategy, session)

	Assign bus_id from next neighboring polygon to municipality fragment

For parts municipalities without a substation inside their polygon the
next municipality polygon part is found and assigned.

Resulting data including information about the assigned substation is
saved to VoronoiMunicipalityCutsAssigned.


	Parameters

	
	with_substation (SQLAlchemy subquery) – Polygons that have a substation inside or are assigned to a substation


	without_substation (SQLAlchemy subquery) – Subquery that includes polygons without a substation


	strategy (str) – Either


	“touches”: Only polygons that touch another polygon from
with_substation are considered


	“within”: Only polygons within a radius of 100 km of polygons
without substation are considered for assignment






	session (SQLAlchemy session) – SQLAlchemy session obejct









See also

The(), but(), different()








	
define_mv_grid_districts()

	Define spatial extent of MV grid districts

The process of identifying the boundary of medium-voltage grid districts
is organized in three steps


	substations_in_municipalities(): The number of substations





located inside each municipality is calculated





	split_multi_substation_municipalities(): The municipalities with





>1 substation inside are split by Voronoi polygons around substations





	merge_polygons_to_grid_district(): All polygons are merged such





that one polygon has exactly one single substation inside




Finally, intermediate tables used for storing data temporarily are deleted.






	
merge_polygons_to_grid_district()

	Merge municipality polygon (parts) to MV grid districts

Polygons of municipalities and cut parts of such polygons are merged to
a single grid district per one HV-MV substation. Prior determined
assignment of cut polygons parts is used as well as proximity of entire
municipality polygons to polygons with a substation inside.


	Step 1: Merge municipality parts that are assigned to the same substation


	Step 2: Insert municipality polygons with exactly one substation


	Step 3: Assign municipality polygons without a substation and insert
to table


	Step 4: Merge MV grid district parts









	
nearest_polygon_with_substation(with_substation, without_substation, strategy, session)

	Assign next neighboring polygon

For municipalities without a substation inside their polygon the next MV
grid district (part) polygon is found and assigned.

Resulting data including information about the assigned substation is
saved to MvGridDistrictsDissolved.


	Parameters

	
	with_substation (SQLAlchemy subquery) – Polygons that have a substation inside or are assigned to a substation


	without_substation (SQLAlchemy subquery) – Subquery that includes polygons without a substation


	strategy (str) – Either


	“touches”: Only polygons that touch another polygon from
with_substation are considered


	“within”: Only polygons within a radius of 100 km of polygons
without substation are considered for assignment






	session (SQLAlchemy session) – SQLAlchemy session obejct






	Returns

	list – IDs of polygons that were already assigned to a polygon with a
substation










	
split_multi_substation_municipalities()

	Split municipalities that have more than one substation

Municipalities that contain more than one HV-MV substation in their
polygon are cut by HV-MV voronoi polygons. Resulting fragments are then
assigned to the next neighboring polygon that has a substation.

In detail, the following steps are performed:


	Step 1: cut municipalities with voronoi polygons


	Step 2: Determine number of substations inside cut polygons


	Step 3: separate cut polygons with exactly one substation inside


	Step 4: Assign polygon without a substation to next neighboring
polygon with a substation


	Step 5: Assign remaining polygons that are non-touching









	
substations_in_municipalities()

	Create a table that counts number of HV-MV substations in each MV grid

Counting is performed in two steps


	HV-MV substations are spatially joined on municipalities, grouped by
municipality and number of substations counted


	Because (1) works only for number of substations >0, all municipalities
not containing a substation, are added











          

      

      

    

  

    
      
          
            
  
renewable_feedin

Central module containing all code dealing with processing era5 weather data.


	
class MapZensusWeatherCell(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
w_id

	




	
zensus_population_id

	








	
class RenewableFeedin(dependencies)

	Bases: egon.data.datasets.Dataset

Calculate possible feedin time series for renewable energy generators

This dataset calculates possible feedin timeseries for fluctuation renewable generators
and coefficient of performance time series for heat pumps. Relevant input is the
downloaded weather data. Parameters for the time series calcultaion are also defined by
representative types of pv plants and wind turbines that are selected within this dataset.
The resulting profiles are stored in the database.


	Dependencies

	
	WeatherData


	Vg250


	ZensusVg250






	Resulting tables

	
	supply.egon_era5_renewable_feedin is filled









	
name = 'RenewableFeedin'

	




	
version = '0.0.7'

	








	
federal_states_per_weather_cell()

	Assings a federal state to each weather cell in Germany.

Sets the federal state to the weather celss using the centroid.
Weather cells at the borders whoes centroid is not inside Germany
are assinged to the closest federal state.


	Returns

	GeoPandas.GeoDataFrame – Index, points and federal state of weather cells inside Germany










	
feedin_per_turbine()

	Calculate feedin timeseries per turbine type and weather cell


	Returns

	gdf (GeoPandas.GeoDataFrame) – Feed-in timeseries per turbine type and weather cell










	
heat_pump_cop()

	Calculate coefficient of performance for heat pumps according to
T. Brown et al: “Synergies of sector coupling and transmission
reinforcement in a cost-optimised, highlyrenewable European energy system”,
2018, p. 8


	Returns

	None.










	
insert_feedin(data, carrier, weather_year)

	Insert feedin data into database


	Parameters

	
	data (xarray.core.dataarray.DataArray) – Feedin timeseries data


	carrier (str) – Name of energy carrier


	weather_year (int) – Selected weather year






	Returns

	None.










	
mapping_zensus_weather()

	Perform mapping between era5 weather cell and zensus grid






	
offshore_weather_cells(geom_column='geom')

	Get weather cells which intersect with Germany


	Returns

	GeoPandas.GeoDataFrame – Index and points of weather cells inside Germany










	
pv()

	Insert feed-in timeseries for pv plants to database


	Returns

	None.










	
solar_thermal()

	Insert feed-in timeseries for pv plants to database


	Returns

	None.










	
turbine_per_weather_cell()

	Assign wind onshore turbine types to weather cells


	Returns

	weather_cells (GeoPandas.GeoDataFrame) – Weather cells in Germany including turbine type










	
weather_cells_in_germany(geom_column='geom')

	Get weather cells which intersect with Germany


	Returns

	GeoPandas.GeoDataFrame – Index and points of weather cells inside Germany










	
wind()

	Insert feed-in timeseries for wind onshore turbines to database


	Returns

	None.










	
wind_offshore()

	Insert feed-in timeseries for wind offshore turbines to database


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
sanity_checks

This module does sanity checks for both the eGon2035 and the eGon100RE scenario
separately where a percentage error is given to showcase difference in output
and input values. Please note that there are missing input technologies in the
supply tables.
Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen


	
class SanityChecks(dependencies)

	Bases: egon.data.datasets.Dataset


	
name = 'SanityChecks'

	




	
version = '0.0.8'

	








	
cts_electricity_demand_share(rtol=1e-05)

	Sanity check for dataset electricity_demand_timeseries :
CtsBuildings

Check sum of aggregated cts electricity demand share which equals to one
for every substation as the substation profile is linearly disaggregated
to all buildings.






	
cts_heat_demand_share(rtol=1e-05)

	Sanity check for dataset electricity_demand_timeseries
: CtsBuildings

Check sum of aggregated cts heat demand share which equals to one
for every substation as the substation profile is linearly disaggregated
to all buildings.






	
etrago_eGon2035_electricity()

	Execute basic sanity checks.

Returns print statements as sanity checks for the electricity sector in
the eGon2035 scenario.


	Parameters

	None



	Returns

	None










	
etrago_eGon2035_gas_DE()

	Execute basic sanity checks for the gas sector in eGon2035

Returns print statements as sanity checks for the gas sector in
the eGon2035 scenario for the following components in Germany:



	Buses: with the function sanity_check_gas_buses()


	Loads: for the carriers ‘CH4_for_industry’ and ‘H2_for_industry’
the deviation is calculated between the sum of the loads in the
database and the sum the loads in the sources document
(opendata.ffe database)


	Generators: the deviation is calculated between the sums of the
nominal powers of the gas generators in the database and of
the ones in the sources document (Biogaspartner Einspeiseatlas
Deutschland from the dena and Productions from the SciGRID_gas
data)


	Stores: deviations for stores with following carriers are
calculated:



	‘CH4’: with the function sanity_check_CH4_stores()


	‘H2_underground’: with the function sanity_check_H2_saltcavern_stores()









	One-port components (loads, generators, stores): verification
that they are all connected to a bus present in the data base
with the function sanity_check_gas_one_port()


	
	Links: verification:

	
	that the gas links are all connected to buses present in
the data base with the function sanity_check_gas_links()


	of the capacity of the gas grid with the function
sanity_check_CH4_grid()




















	
etrago_eGon2035_gas_abroad()

	Execute basic sanity checks for the gas sector in eGon2035 abroad

Returns print statements as sanity checks for the gas sector in
the eGon2035 scenario for the following components in Germany:



	Buses


	Loads: for the carriers ‘CH4’ and ‘H2_for_industry’
the deviation is calculated between the sum of the loads in the
database and the sum in the sources document (TYNDP)


	Generators: the deviation is calculated between the sums of the
nominal powers of the methane generators abroad in the database
and of the ones in the sources document (TYNDP)


	Stores: the deviation for methane stores abroad is calculated
between the sum of the capacities in the data base and the one
of the source document (SciGRID_gas data)


	Links: verification of the capacity of the crossbordering gas
grid pipelines.












	
etrago_eGon2035_heat()

	Execute basic sanity checks.

Returns print statements as sanity checks for the heat sector in
the eGon2035 scenario.


	Parameters

	None



	Returns

	None










	
residential_electricity_annual_sum(rtol=1e-05)

	Sanity check for dataset electricity_demand_timeseries :
Demand_Building_Assignment

Aggregate the annual demand of all census cells at NUTS3 to compare
with initial scaling parameters from DemandRegio.






	
residential_electricity_hh_refinement(rtol=1e-05)

	Sanity check for dataset electricity_demand_timeseries :
Household Demands

Check sum of aggregated household types after refinement method
was applied and compare it to the original census values.






	
sanity_check_CH4_grid(scn)

	Execute sanity checks for the gas grid capacity in Germany

Returns print statements as sanity checks for the CH4 links
(pipelines) in Germany. The deviation is calculated between
the sum of the power (p_nom) of all the CH4 pipelines in Germany
for one scenario in the database and the sum of the powers of the
imported pipelines.
In eGon100RE, the sum is reduced by the share of the grid that is
allocated to hydrogen (share calculated by PyPSA-eur-sec).
This test works also in test mode.


	Parameters

	scn_name (str) – Name of the scenario



	Returns

	scn_name (float) – Sum of the power (p_nom) of all the pipelines in Germany










	
sanity_check_CH4_stores(scn)

	Execute sanity checks for the CH4 stores in Germany

Returns print statements as sanity checks for the CH4 stores
capacity in Germany. The deviation is calculated between:



	the sum of the capacities of the stores with carrier ‘CH4’
in the database (for one scenario) and


	
	the sum of:

	
	the capacity the gas grid allocated to CH4 (total capacity
in eGon2035 and capacity reduced the share of the grid
allocated to H2 in eGon100RE)


	the total capacity of the CH4 stores in Germany (source: GIE)
















	Parameters

	scn_name (str) – Name of the scenario










	
sanity_check_H2_saltcavern_stores(scn)

	Execute sanity checks for the H2 saltcavern stores in Germany

Returns print as sanity checks for the H2 saltcavern potential
storage capacity in Germany. The deviation is calculated between:



	the sum of the of the H2 saltcavern potential storage capacity
(e_nom_max) in the database and


	the sum of the H2 saltcavern potential storage capacity
assumed to be the ratio of the areas of 500 m radius around
substations in each german federal state and the estimated
total hydrogen storage potential of the corresponding federal
state (data from InSpEE-DS report).







This test works also in test mode.


	Parameters

	scn_name (str) – Name of the scenario










	
sanity_check_gas_buses(scn)

	Execute sanity checks for the gas buses in Germany

Returns print statements as sanity checks for the CH4, H2_grid and
H2_saltcavern buses.



	For all of them, it is checked if they are not isolated.


	For the grid buses, the deviation is calculated between the
number of gas grid buses in the database and the original
Scigrid_gas number of gas buses in Germany.








	Parameters

	scn_name (str) – Name of the scenario










	
sanity_check_gas_links(scn)

	Check connections of gas links

Verify that gas links are all connected to buses present in the data
base. Return print statements if this is not the case.
This sanity check is not specific to Germany, it also includes
the neighbouring countries.


	Parameters

	scn_name (str) – Name of the scenario










	
sanity_check_gas_one_port(scn)

	Check connections of gas one-port components

Verify that gas one-port component (loads, generators, stores) are
all connected to a bus (of the right carrier) present in the data
base. Return print statements if this is not the case.
These sanity checks are not specific to Germany, they also include
the neighbouring countries.


	Parameters

	scn_name (str) – Name of the scenario










	
sanitycheck_dsm()

	




	
sanitycheck_emobility_mit()

	Execute sanity checks for eMobility: motorized individual travel

Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario
using assertions:



	Allocated EV numbers and EVs allocated to grid districts


	Trip data (original inout data from simBEV)


	Model data in eTraGo PF tables (grid.egon_etrago_*)








	Parameters

	None



	Returns

	None










	
sanitycheck_home_batteries()

	




	
sanitycheck_pv_rooftop_buildings()

	






          

      

      

    

  

    
      
          
            
  
scenario_capacities

The central module containing all code dealing with importing data from
Netzentwicklungsplan 2035, Version 2031, Szenario C


	
class EgonScenarioCapacities(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
capacity

	




	
carrier

	




	
component

	




	
index

	




	
nuts

	




	
scenario_name

	








	
class NEP2021ConvPowerPlants(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
a2035_capacity

	




	
a2035_chp

	




	
b2035_capacity

	




	
b2035_chp

	




	
b2040_capacity

	




	
b2040_chp

	




	
bnetza_id

	




	
c2035_capacity

	




	
c2035_chp

	




	
capacity

	




	
carrier

	




	
carrier_nep

	




	
chp

	




	
city

	




	
commissioned

	




	
federal_state

	




	
index

	




	
name

	




	
name_unit

	




	
postcode

	




	
status

	








	
class ScenarioCapacities(dependencies)

	Bases: egon.data.datasets.Dataset

Create and fill table with installed generation capacities in Germany

This dataset creates and fills a table with the installed generation capacities in
Germany in a lower spatial resolution (either per federal state or on national level).
This data is coming from external sources (e.g. German grid developement plan for scenario eGon2035).
The table is in downstream datasets used to define target values for the installed capacities.


	Dependencies

	
	Setup


	PypsaEurSec


	Vg250


	DataBundle


	ZensusPopulation






	Resulting tables

	
	supply.egon_scenario_capacities is created and filled


	supply.egon_nep_2021_conventional_powerplants is created and filled









	
name = 'ScenarioCapacities'

	




	
version = '0.0.13'

	








	
aggr_nep_capacities(carriers)

	Aggregates capacities from NEP power plants list by carrier and federal
state


	Returns

	pandas.Dataframe – Dataframe with capacities per federal state and carrier










	
create_table()

	Create input tables for scenario setup


	Returns

	None.










	
district_heating_input()

	Imports data for district heating networks in Germany


	Returns

	None.










	
eGon100_capacities()

	Inserts installed capacities for the eGon100 scenario


	Returns

	None.










	
insert_capacities_per_federal_state_nep()

	Inserts installed capacities per federal state accordning to
NEP 2035 (version 2021), scenario 2035 C


	Returns

	None.










	
insert_data_nep()

	Overall function for importing scenario input data for eGon2035 scenario


	Returns

	None.










	
insert_nep_list_powerplants(export=True)

	Insert list of conventional powerplants attached to the approval
of the scenario report by BNetzA


	Parameters

	export (bool) – Choose if nep list should be exported to the data
base. The default is True.
If export=False a data frame will be returned



	Returns

	kw_liste_nep (pandas.DataFrame) – List of conventional power plants from nep if export=False










	
map_carrier()

	Map carriers from NEP and Marktstammdatenregister to carriers from eGon


	Returns

	pandas.Series – List of mapped carriers










	
nuts_mapping()

	




	
population_share()

	Calulate share of population in testmode


	Returns

	float – Share of population in testmode












          

      

      

    

  

    
      
          
            
  
society_prognosis

The central module containing all code dealing with processing and
forecast Zensus data.


	
class EgonHouseholdPrognosis(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
households

	




	
year

	




	
zensus_population_id

	








	
class EgonPopulationPrognosis(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
population

	




	
year

	




	
zensus_population_id

	








	
class SocietyPrognosis(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables()

	Create table to map zensus grid and administrative districts (nuts3)






	
household_prognosis_per_year(prognosis_nuts3, zensus, year)

	Calculate household prognosis for a specitic year






	
zensus_household()

	Bring household prognosis from DemandRegio to Zensus grid






	
zensus_population()

	Bring population prognosis from DemandRegio to Zensus grid








          

      

      

    

  

    
      
          
            
  
substation_voronoi

The central module containing code to create substation voronois


	
class EgonEhvSubstationVoronoi(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
geom

	




	
id

	








	
class EgonHvmvSubstationVoronoi(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
geom

	




	
id

	








	
class SubstationVoronoi(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables()

	Create tables for voronoi polygons
:returns: None.






	
substation_voronoi()

	Creates voronoi polygons for hvmv and ehv substations


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
tyndp

The central module containing all code dealing with downloading tyndp data


	
class Tyndp(dependencies)

	Bases: egon.data.datasets.Dataset

Downloads data for foreign countries from Ten-Year-Network-Developement Plan

This dataset downloads installed generation capacities and load time series for
foreign countries from the website of the Ten-Year-Network-Developement Plan 2020 from ENTSO-E.
That data is stored into files and later on written into the database
(see ElectricalNeighbours).


	Dependencies

	
	Setup








Resulting tables


	
name = 'Tyndp'

	




	
version = '0.0.1'

	








	
download()

	Download input data from TYNDP 2020
:returns: None.








          

      

      

    

  

    
      
          
            
  
vg250_mv_grid_districts

The module containing all code dealing with pv rooftop distribution.


	
class MapMvgriddistrictsVg250(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
vg250_lan

	








	
class Vg250MvGridDistricts(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables()

	Create tables for mapping grid districts to federal state
:returns: None.






	
mapping()

	Map mv grid distrcits to federal states


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
zensus_mv_grid_districts

Implements mapping between mv grid districts and zensus cells


	
class MapZensusGridDistricts(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
zensus_population_id

	








	
class ZensusMvGridDistricts(dependencies)

	Bases: egon.data.datasets.Dataset






	
mapping()

	Perform mapping between mv grid districts and zensus grid








          

      

      

    

  

    
      
          
            
  
zensus_vg250


	
class DestatisZensusPopulationPerHa(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom

	




	
geom_point

	




	
grid_id

	




	
id

	




	
population

	




	
x_mp

	




	
y_mp

	








	
class DestatisZensusPopulationPerHaInsideGermany(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom

	




	
geom_point

	




	
grid_id

	




	
id

	




	
population

	








	
class MapZensusVg250(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
vg250_municipality_id

	




	
vg250_nuts3

	




	
zensus_geom

	




	
zensus_population_id

	








	
class Vg250Gem(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
ade

	




	
ags

	




	
ags_0

	




	
ars

	




	
ars_0

	




	
bem

	




	
bez

	




	
bsg

	




	
debkg_id

	




	
fk_s3

	




	
gen

	




	
geometry

	




	
gf

	




	
ibz

	




	
id

	




	
nbd

	




	
nuts

	




	
rs

	




	
rs_0

	




	
sdv_ars

	




	
sdv_rs

	




	
sn_g

	




	
sn_k

	




	
sn_l

	




	
sn_r

	




	
sn_v1

	




	
sn_v2

	




	
wsk

	








	
class Vg250GemPopulation(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
ags_0

	




	
area_ha

	




	
area_km2

	




	
bem

	




	
bez

	




	
cell_count

	




	
gen

	




	
geom

	




	
id

	




	
nuts

	




	
population_density

	




	
population_total

	




	
rs_0

	








	
class Vg250Sta(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
ade

	




	
ags

	




	
ags_0

	




	
ars

	




	
ars_0

	




	
bem

	




	
bez

	




	
bsg

	




	
debkg_id

	




	
fk_s3

	




	
gen

	




	
geometry

	




	
gf

	




	
ibz

	




	
id

	




	
nbd

	




	
nuts

	




	
rs

	




	
rs_0

	




	
sdv_ars

	




	
sdv_rs

	




	
sn_g

	




	
sn_k

	




	
sn_l

	




	
sn_r

	




	
sn_v1

	




	
sn_v2

	




	
wsk

	








	
class ZensusVg250(dependencies)

	Bases: egon.data.datasets.Dataset






	
add_metadata_vg250_gem_pop()

	Create metadata JSON for Vg250GemPopulation

Creates a metdadata JSON string and writes it to the database table comment






	
add_metadata_zensus_inside_ger()

	Create metadata JSON for DestatisZensusPopulationPerHaInsideGermany

Creates a metdadata JSON string and writes it to the database table comment






	
inside_germany()

	Filter zensus data by data inside Germany and population > 0






	
map_zensus_vg250()

	Perform mapping between municipalities and zensus grid






	
population_in_municipalities()

	Create table of municipalities with information about population








          

      

      

    

  

    
      
          
            
  
chp



	match_nep

	small_chp





The central module containing all code dealing with combined heat and power
(CHP) plants.


	
class Chp(dependencies)

	Bases: egon.data.datasets.Dataset

Extract combined heat and power plants for each scenario

This dataset creates combined heat and power (CHP) plants for each scenario and defines their use case.
The method bases on existing CHP plants from Marktstammdatenregister. For the eGon2035 scenario,
a list of CHP plans from the grid operator is used for new largescale CHP plants. CHP < 10MW are
randomly distributed.
Depending on the distance to a district heating grid, it is decided if the CHP is used to
supply a district heating grid or used by an industrial site.


	Dependencies

	
	GasAreaseGon100RE


	GasAreaseGon2035


	DistrictHeatingAreas


	IndustrialDemandCurves


	OsmLanduse


	download_mastr_data


	define_mv_grid_districts


	ScenarioCapacities






	Resulting tables

	
	supply.egon_chp_plants is created and filled


	supply.egon_mastr_conventional_without_chp is created and filled









	
name = 'Chp'

	




	
version = '0.0.6'

	








	
class EgonChp(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
carrier

	




	
ch4_bus_id

	




	
district_heating

	




	
district_heating_area_id

	




	
el_capacity

	




	
electrical_bus_id

	




	
geom

	




	
id

	




	
scenario

	




	
source_id

	




	
sources

	




	
th_capacity

	




	
voltage_level

	








	
class EgonMaStRConventinalWithoutChp(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
EinheitMastrNummer

	




	
carrier

	




	
city

	




	
el_capacity

	




	
federal_state

	




	
geometry

	




	
id

	




	
plz

	








	
assign_heat_bus(scenario='eGon2035')

	Selects heat_bus for chps used in district heating.


	Parameters

	scenario (str, optional) – Name of the corresponding scenario. The default is ‘eGon2035’.



	Returns

	None.










	
create_tables()

	Create tables for chp data
:returns: None.






	
extension_BB()

	




	
extension_BE()

	




	
extension_BW()

	




	
extension_BY()

	




	
extension_HB()

	




	
extension_HE()

	




	
extension_HH()

	




	
extension_MV()

	




	
extension_NS()

	




	
extension_NW()

	




	
extension_RP()

	




	
extension_SH()

	




	
extension_SL()

	




	
extension_SN()

	




	
extension_ST()

	




	
extension_TH()

	




	
insert_biomass_chp(scenario)

	Insert biomass chp plants of future scenario


	Parameters

	scenario (str) – Name of scenario.



	Returns

	None.










	
insert_chp_egon100re()

	Insert CHP plants for eGon100RE considering results from pypsa-eur-sec


	Returns

	None.










	
insert_chp_egon2035()

	Insert CHP plants for eGon2035 considering NEP and MaStR data


	Returns

	None.










	
nearest(row, df, centroid=False, row_geom_col='geometry', df_geom_col='geometry', src_column=None)

	Finds the nearest point and returns the specified column values


	Parameters

	
	row (pandas.Series) – Data to which the nearest data of df is assigned.


	df (pandas.DataFrame) – Data which includes all options for the nearest neighbor alogrithm.


	centroid (boolean) – Use centroid geoemtry. The default is False.


	row_geom_col (str, optional) – Name of row’s geometry column. The default is ‘geometry’.


	df_geom_col (str, optional) – Name of df’s geometry column. The default is ‘geometry’.


	src_column (str, optional) – Name of returned df column. The default is None.






	Returns

	value (pandas.Series) – Values of specified column of df












          

      

      

    

  

    
      
          
            
  
match_nep

The module containing all code dealing with large chp from NEP list.


	
insert_large_chp(sources, target, EgonChp)

	




	
match_nep_chp(chp_NEP, MaStR_konv, chp_NEP_matched, buffer_capacity=0.1, consider_location='plz', consider_carrier=True, consider_capacity=True)

	Match CHP plants from MaStR to list of power plants from NEP


	Parameters

	
	chp_NEP (pandas.DataFrame) – CHP plants from NEP which are not matched to MaStR


	MaStR_konv (pandas.DataFrame) – CHP plants from MaStR which are not matched to NEP


	chp_NEP_matched (pandas.DataFrame) – Already matched CHP


	buffer_capacity (float, optional) – Maximum difference in capacity in p.u. The default is 0.1.






	Returns

	
	chp_NEP_matched (pandas.DataFrame) – Matched CHP


	MaStR_konv (pandas.DataFrame) – CHP plants from MaStR which are not matched to NEP


	chp_NEP (pandas.DataFrame) – CHP plants from NEP which are not matched to MaStR















	
select_chp_from_mastr(sources)

	Select combustion CHP plants from MaStR


	Returns

	MaStR_konv (pd.DataFrame) – CHP plants from MaStR










	
select_chp_from_nep(sources)

	Select CHP plants with location from NEP’s list of power plants


	Returns

	pandas.DataFrame – CHP plants from NEP list












          

      

      

    

  

    
      
          
            
  
small_chp

The module containing all code dealing with chp < 10MW.


	
assign_use_case(chp, sources)

	Identifies CHPs used in district heating areas.

A CHP plant is assigned to a district heating area if
- it is closer than 1km to the borders of the district heating area
- the name of the osm landuse area where the CHP is located indicates
that it feeds in to a district heating area (e.g. ‘Stadtwerke’)
- it is not closer than 100m to an industrial area


	Parameters

	chp (pandas.DataFrame) – CHPs without district_heating flag



	Returns

	chp (pandas.DataFrame) – CHPs with identification of district_heating CHPs










	
existing_chp_smaller_10mw(sources, MaStR_konv, EgonChp)

	Insert existing small CHPs based on MaStR and target values


	Parameters

	
	MaStR_konv (pandas.DataFrame) – List of conevntional CHPs in MaStR whoes locateion is not used


	EgonChp (class) – Class definition of daabase table for CHPs






	Returns

	additional_capacitiy (pandas.Series) – Capacity of new locations for small chp per federal state










	
extension_district_heating(federal_state, additional_capacity, flh_chp, EgonChp, areas_without_chp_only=False)

	Build new CHP < 10 MW for district areas considering existing CHP
and the heat demand.

For more details on the placement alogrithm have a look at the description
of extension_to_areas().


	Parameters

	
	federal_state (str) – Name of the federal state.


	additional_capacity (float) – Additional electrical capacity of new CHP plants in district heating


	flh_chp (int) – Assumed number of full load hours of heat output.


	EgonChp (class) – ORM-class definition of CHP database-table.


	areas_without_chp_only (boolean, optional) – Set if CHPs are only assigned to district heating areas which don’t
have an existing CHP. The default is True.






	Returns

	None.










	
extension_industrial(federal_state, additional_capacity, flh_chp, EgonChp)

	Build new CHP < 10 MW for industry considering existing CHP,
osm landuse areas and electricity demands.

For more details on the placement alogrithm have a look at the description
of extension_to_areas().


	Parameters

	
	federal_state (str) – Name of the federal state.


	additional_capacity (float) – Additional electrical capacity of new CHP plants in indsutry.


	flh_chp (int) – Assumed number of full load hours of electricity output.


	EgonChp (class) – ORM-class definition of CHP database-table.






	Returns

	None.










	
extension_per_federal_state(federal_state, EgonChp)

	Adds new CHP plants to meet target value per federal state.

The additional capacity for CHPs < 10 MW is distributed discretly.
Therefore, existing CHPs and their parameters from Marktstammdatenregister
are randomly selected and allocated in a district heating grid.
In order to generate a reasonable distribution, new CHPs can only
be assigned to a district heating grid which needs additional supply
technologies. This is estimated by the substraction of demand, and the
assumed dispatch oof a CHP considering the capacitiy and full load hours
of each CHPs.


	Parameters

	
	additional_capacity (float) – Capacity to distribute.


	federal_state (str) – Name of the federal state


	EgonChp (class) – ORM-class definition of CHP table






	Returns

	None.










	
extension_to_areas(areas, additional_capacity, existing_chp, flh, EgonChp, district_heating=True, scenario='eGon2035')

	Builds new CHPs on potential industry or district heating areas.

This method can be used to distrectly extend and spatial allocate CHP
for industry or district heating areas.
The following steps are running in a loop until the additional
capacity is reached:



	Randomly select an existing CHP < 10MW and its parameters.




2. Select possible areas where the CHP can be located.
It is assumed that CHPs are only build if the demand of the industry
or district heating grid exceeds the annual energy output of the CHP.
The energy output is calculated using the installed capacity and
estimated full load hours.
The thermal output is used for district heating areas. Since there are
no explicit heat demands for industry, the electricity output and
demands are used.

3. Randomly select one of the possible areas.
The areas are weighted by the annal demand, assuming that the
possibility of building a CHP plant is higher when for large consumers.


	Insert allocated CHP plant into the database




5. Substract capacity of new build CHP from the additional capacity.
The energy demands of the areas are reduced by the estimated energy
output of the CHP plant.





	Parameters

	
	areas (geopandas.GeoDataFrame) – Possible areas for a new CHP plant, including their energy demand


	additional_capacity (float) – Overall eletcrical capacity of CHPs that should be build in MW.


	existing_chp (pandas.DataFrame) – List of existing CHP plants including electrical and thermal capacity


	flh (int) – Assumed electrical or thermal full load hours.


	EgonChp (class) – ORM-class definition of CHP database-table.


	district_heating (boolean, optional) – State if the areas are district heating areas. The default is True.






	Returns

	None.










	
insert_mastr_chp(mastr_chp, EgonChp)

	Insert MaStR data from exising CHPs into database table


	Parameters

	
	mastr_chp (pandas.DataFrame) – List of existing CHPs in MaStR.


	EgonChp (class) – Class definition of daabase table for CHPs






	Returns

	None.












          

      

      

    

  

    
      
          
            
  
data_bundle

The central module containing all code dealing with small scale inpu-data


	
class DataBundle(dependencies)

	Bases: egon.data.datasets.Dataset






	
download()

	Download small scale imput data from Zenodo








          

      

      

    

  

    
      
          
            
  
demandregio



	install_disaggregator





The central module containing all code dealing with importing and
adjusting data from demandRegio


	
class DemandRegio(dependencies)

	Bases: egon.data.datasets.Dataset






	
class EgonDemandRegioCtsInd(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
demand

	




	
nuts3

	




	
scenario

	




	
wz

	




	
year

	








	
class EgonDemandRegioHH(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
demand

	




	
hh_size

	




	
nuts3

	




	
scenario

	




	
year

	








	
class EgonDemandRegioHouseholds(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
hh_size

	




	
households

	




	
nuts3

	




	
year

	








	
class EgonDemandRegioPopulation(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
nuts3

	




	
population

	




	
year

	








	
class EgonDemandRegioTimeseriesCtsInd(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
load_curve

	




	
slp

	




	
wz

	




	
year

	








	
class EgonDemandRegioWz(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
definition

	




	
sector

	




	
wz

	








	
adjust_cts_ind_nep(ec_cts_ind, sector)

	Add electrical demand of new largescale CTS und industrial consumers
according to NEP 2021, scneario C 2035. Values per federal state are
linear distributed over all CTS branches and nuts3 regions.


	Parameters

	ec_cts_ind (pandas.DataFrame) – CTS or industry demand without new largescale consumers.



	Returns

	ec_cts_ind (pandas.DataFrame) – CTS or industry demand including new largescale consumers.










	
adjust_ind_pes(ec_cts_ind)

	Adjust electricity demand of industrial consumers due to electrification
of process heat based on assumptions of pypsa-eur-sec.


	Parameters

	ec_cts_ind (pandas.DataFrame) – Industrial demand without additional electrification



	Returns

	ec_cts_ind (pandas.DataFrame) – Industrial demand with additional electrification










	
create_tables()

	Create tables for demandregio data
:returns: None.






	
data_in_boundaries(df)

	Select rows with nuts3 code within boundaries, used for testmode


	Parameters

	df (pandas.DataFrame) – Data for all nuts3 regions



	Returns

	pandas.DataFrame – Data for nuts3 regions within boundaries










	
disagg_households_power(scenario, year, weight_by_income=False, original=False, **kwargs)

	Perform spatial disaggregation of electric power in [GWh/a] by key and
possibly weight by income.
Similar to disaggregator.spatial.disagg_households_power


	Parameters

	
	by (str) – must be one of [‘households’, ‘population’]


	weight_by_income (bool, optional) – Flag if to weight the results by the regional income (default False)


	orignal (bool, optional) – Throughput to function households_per_size,
A flag if the results should be left untouched and returned in
original form for the year 2011 (True) or if they should be scaled to
the given year by the population in that year (False).






	Returns

	pd.DataFrame or pd.Series










	
insert_cts_ind(scenario, year, engine, target_values)

	Calculates electrical demands of CTS and industry using demandregio’s
disaggregator, adjusts them according to resulting values of NEP 2021 or
JRC IDEES and insert results into the database.


	Parameters

	
	scenario (str) – Name of the corresponing scenario.


	year (int) – The number of households per region is taken from this year.


	target_values (dict) – List of target values for each scenario and sector.






	Returns

	None.










	
insert_cts_ind_demands()

	Insert electricity demands per nuts3-region in Germany according to
demandregio using its disaggregator-tool in MWh


	Returns

	None.










	
insert_cts_ind_wz_definitions()

	Insert demandregio’s definitions of CTS and industrial branches


	Returns

	None.










	
insert_hh_demand(scenario, year, engine)

	Calculates electrical demands of private households using demandregio’s
disaggregator and insert results into the database.


	Parameters

	
	scenario (str) – Name of the corresponing scenario.


	year (int) – The number of households per region is taken from this year.






	Returns

	None.










	
insert_household_demand()

	Insert electrical demands for households according to
demandregio using its disaggregator-tool in MWh


	Returns

	None.










	
insert_society_data()

	Insert population and number of households per nuts3-region in Germany
according to demandregio using its disaggregator-tool


	Returns

	None.










	
insert_timeseries_per_wz(sector, year)

	Insert normalized electrical load time series for the selected sector


	Parameters

	
	sector (str) – Name of the sector. [‘CTS’, ‘industry’]


	year (int) – Selected weather year






	Returns

	None.










	
match_nuts3_bl()

	Function that maps the federal state to each nuts3 region


	Returns

	df (pandas.DataFrame) – List of nuts3 regions and the federal state of Germany.










	
timeseries_per_wz()

	Calcultae and insert normalized timeseries per wz for cts and industry


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
install_disaggregator

This module downloads and installs demandregio’s disaggregator from GitHub


	
clone_and_install()

	Clone and install repository of demandregio’s disaggregator


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
district_heating_areas



	plot





Central module containing all code creating with district heating areas.

This module obtains the information from the census tables and the heat demand
densities, demarcates so the current and future district heating areas. In the
end it saves them in the database.


	
class DistrictHeatingAreas(dependencies)

	Bases: egon.data.datasets.Dataset

Create district heating grids for all scenarios

This dataset creates district heating grids for each scenario based on a defined
district heating share, annual heat demands calcultaed within
HeatDemandImport
and information on existing heating grids from census ZensusMiscellaneous

First the tables are created using create_tables(). Afterwards, the
distict heating grids for each scenario are created and inserted into the database
by applying the function district_heating_areas()


	Dependencies

	
	HeatDemandImport


	ZensusMiscellaneous


	ScenarioParameters






	Resulting tables

	
	demand.egon_map_zensus_district_heating_areas
is created and filled


	demand.egon_district_heating_areas is created and filled









	
name = 'district-heating-areas'

	




	
version = '0.0.1'

	








	
class EgonDistrictHeatingAreas(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area_id

	




	
geom_polygon

	




	
id

	




	
residential_and_service_demand

	




	
scenario

	








	
class MapZensusDistrictHeatingAreas(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area_id

	




	
id

	




	
scenario

	




	
zensus_population_id

	








	
add_metadata()

	Writes metadata JSON string into table comment.






	
area_grouping(raw_polygons, distance=200, minimum_total_demand=None, maximum_total_demand=None)

	Group polygons which are close to each other.

This function creates buffers around the given cell polygons (called
“raw_polygons”) and unions the intersecting buffer polygons. Afterwards, it
unions the cell polygons which are within one unified buffer polygon.
If requested, the cells being in areas fulfilling the minimum heat demand
criterium are selected.


	Parameters

	
	raw_polygons (geopandas.geodataframe.GeoDataFrame) – polygons to be grouped.


	distance (integer) – distance for buffering


	minimum_total_demand (integer) – optional minimum total heat demand to achieve a minimum size of areas


	maximal_total_demand (integer) – optional maximal total heat demand per area, if demand is higher the
area is cut at nuts3 borders






	Returns

	join (geopandas.geodataframe.GeoDataFrame) – cell polygons with area id





Notes

None






	
create_tables()

	Create tables for district heating areas


	Returns

	None










	
demarcation(plotting=True)

	Load scenario specific district heating areas with metadata into database.

This function executes the functions that identifies the areas which will
be supplied with district heat in the two eGo^n scenarios. The creation of
heat demand density curve figures is optional. So is also the export of
scenario specific Prospective Supply Districts for district heating (PSDs)
as shapefiles including the creation of a figure showing the comparison
of sorted heat demand densities.

The method was executed for 2015, 2035 and 2050 to find out which
scenario year defines the PSDs. The year 2035 was selected and
the function was adjusted accordingly.
If you need the 2015 scenario heat demand data, please have a look at
the heat demand script commit 270bea50332016447e869f69d51e96113073b8a0,
where the 2015 scenario was deactivated. You can study the 2015 PSDs in
the study_prospective_district_heating_areas function after
un-commenting some lines.


	Parameters

	plotting (boolean) – if True, figure showing the heat demand density curve will be created



	Returns

	None





Notes

None






	
district_heating_areas(scenario_name, plotting=False)

	Create scenario specific district heating areas considering on census data.

This function loads the district heating share from the scenario table and
demarcate the scenario specific district heating areas. To do so it
uses the census data on flats currently supplied with district heat, which
are supplied selected first, if the estimated connection rate >= 30%.

All scenarios use the Prospective Supply Districts (PSDs) made for the
eGon2035 scenario to identify the areas where additional district heating
supply is feasible. One PSD dataset is to defined which is constant over
the years to allow comparisons. Moreover, it is
assumed that the eGon2035 PSD dataset is suitable, even though the heat
demands will continue to decrease from 2035 to 2050, because district
heating systems will be to planned and built before 2050, to exist in 2050.

It is assumed that the connection rate in cells with district heating will
be a 100%. That is because later in project the number of buildings per
cell will be used and connection rates not being 0 or 100% will create
buildings which are not fully supplied by one technology.

The cell polygons which carry information (like heat demand etc.) are
grouped into areas which are close to each other.
Only cells with a minimum heat demand density (e.g. >100 GJ/(ha a)) are
considered when creating PSDs. Therefore, the select_high_heat_demands()
function is used. There is minimum heat demand per PSDs to achieve a
certain size.
While the grouping buffer for the creation of Prospective Supply Districts
(PSDs) is 200m as in the sEEnergies project, the buffer for grouping census
data cell with an estimated connection rate >= 30% is 500m.
The 500m buffer is also used when the resulting district heating areas are
grouped, because they are built upon the existing district heating systems.

To reduce the final number of district heating areas having the size of
only one hectare, the minimum heat demand critrium is also applied when
grouping the cells with census data on district heat.

To avoid huge district heating areas, as they appear in the Ruhr area,
district heating areas with an annual demand > 4,000,000 MWh are split
by nuts3 boundaries. This as set as maximum_total_demand of the
area_grouping function.


	Parameters

	
	scenario_name (str) – name of scenario to be studies


	plotting (boolean) – if True, figure showing the heat demand density curve will be created






	Returns

	None





Notes

None






	
load_census_data()

	Load the heating type information from the census database table.

The census apartment and the census building table contains information
about the heating type. The information are loaded from the apartment
table, because they might be more useful when it comes to the estimation of
the connection rates. Only cells with a connection rate equal to or larger
than 30% (based on the census apartment data) are included in the returned
district_heat GeoDataFrame.


	Parameters

	None



	Returns

	
	district_heat (geopandas.geodataframe.GeoDataFrame) – polygons (hectare cells) with district heat information


	heating_type (geopandas.geodataframe.GeoDataFrame) – polygons (hectare cells) with the number of flats having heating
type information










Notes

The census contains only information on residential buildings.
Therefore, also connection rate of the residential buildings can be
estimated.






	
load_heat_demands(scenario_name)

	Load scenario specific heat demand data from the local database.


	Parameters

	scenario_name (str) – name of the scenario studied



	Returns

	heat_demand (geopandas.geodataframe.GeoDataFrame) – polygons (hectare cells) with heat demand data










	
select_high_heat_demands(heat_demand)

	Take heat demand cells and select cells with higher heat demand.

Those can be used to identify prospective district heating supply areas.


	Parameters

	heat_demand (geopandas.geodataframe.GeoDataFrame) – dataset of heat demand cells.



	Returns

	high_heat_demand (geopandas.geodataframe.GeoDataFrame) – polygons (hectare cells) with heat demands high enough to be
potentially high enough to be in a district heating area










	
study_prospective_district_heating_areas()

	Get information about Prospective Supply Districts for district heating.

This optional function executes the functions so that you can study the
heat demand density data of different scenarios and compare them and the
resulting Prospective Supply Districts (PSDs) for district heating. This
functions saves local shapefiles, because these data are not written into
database. Moreover, heat density curves are drawn.
This function is tailor-made and includes the scenarios eGon2035 and
eGon100RE.


	Parameters

	None



	Returns

	None





Notes

None








          

      

      

    

  

    
      
          
            
  
plot

Module containing all code creating with plots of district heating areas


	
plot_heat_density_sorted(heat_denisty_per_scenario, scenario_name=None)

	Create diagrams for visualisation, sorted by HDD
sorted census dh first, sorted new areas, left overs, DH share
create one dataframe with all data: first the cells with existing,
then the cells with new district heating systems and in the end the
ones without


	Parameters

	
	scenario_name (TYPE) – DESCRIPTION.


	collection (TYPE) – DESCRIPTION.






	Returns

	None.












          

      

      

    

  

    
      
          
            
  
electricity_demand



	temporal





The central module containing all code dealing with processing
data from demandRegio


	
class CtsElectricityDemand(dependencies)

	Bases: egon.data.datasets.Dataset






	
class EgonDemandRegioZensusElectricity(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
demand

	




	
scenario

	




	
sector

	




	
zensus_population_id

	








	
class HouseholdElectricityDemand(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables()

	Create tables for demandregio data
:returns: None.






	
distribute_cts_demands()

	Distribute electrical demands for cts to zensus cells.

The demands on nuts3-level from demandregio are linear distributed
to the heat demand of cts in each zensus cell.


	Returns

	None.










	
get_annual_household_el_demand_cells()

	Annual electricity demand per cell is determined

Timeseries for every cell are accumulated, the maximum value
determined and with the respective nuts3 factor scaled for 2035 and 2050
scenario.


Note

In test-mode ‘SH’ the iteration takes place by ‘cell_id’ to avoid
intensive RAM usage. For whole Germany ‘nuts3’ are taken and
RAM > 32GB is necessary.










          

      

      

    

  

    
      
          
            
  
temporal

The central module containing all code dealing with processing
timeseries data using demandregio


	
class EgonEtragoElectricityCts(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
p_set

	




	
q_set

	




	
scn_name

	








	
calc_load_curve(share_wz, annual_demand=1)

	Create aggregated demand curve for service sector


	Parameters

	
	share_wz (pandas.Series or pandas.DataFrame) – Share of annual demand per cts branch


	annual_demand (float or pandas.Series, optional) – Annual demand in MWh. The default is 1.






	Returns

	pandas.Series or pandas.DataFrame – Annual load curve of combindes cts branches










	
calc_load_curves_cts(scenario)

	Temporal disaggregate electrical cts demand per substation.


	Parameters

	scenario (str) – Scenario name.



	Returns

	pandas.DataFrame – Demand timeseries of cts per bus id










	
create_table()

	Create tables for demandregio data
:returns: None.






	
insert_cts_load()

	Inserts electrical cts loads to etrago-tables in the database


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
electricity_demand_timeseries



	cts_buildings

	hh_buildings

	hh_profiles

	mapping

	tools








          

      

      

    

  

    
      
          
            
  
cts_buildings

CTS electricity and heat demand time series for scenarios in 2035 and 2050
assigned to OSM-buildings.

Disaggregation of cts heat & electricity demand time series from MV Substation
to census cells via annual demand and then to OSM buildings via
amenity tags or randomly if no sufficient OSM-data is available in the
respective census cell. If no OSM-buildings or synthetic residential buildings
are available new synthetic 5x5m buildings are generated.

The resulting data is stored in separate tables


	
	openstreetmap.osm_buildings_synthetic:

	Lists generated synthetic building with id, zensus_population_id and
building type. This table is already created within
hh_buildings.map_houseprofiles_to_buildings()







	
	openstreetmap.egon_cts_buildings:

	Table of all selected cts buildings with id, census cell id, geometry and
amenity count in building. This table is created within
cts_buildings()







	
	demand.egon_cts_electricity_demand_building_share:

	Table including the mv substation electricity profile share of all selected
cts buildings for scenario eGon2035 and eGon100RE. This table is created
within cts_electricity()







	
	demand.egon_cts_heat_demand_building_share:

	Table including the mv substation heat profile share of all selected
cts buildings for scenario eGon2035 and eGon100RE. This table is created
within cts_heat()







	
	demand.egon_building_electricity_peak_loads:

	Mapping of electricity demand time series and buildings including cell_id,
building area and peak load. This table is already created within
hh_buildings.get_building_peak_loads()







	
	boundaries.egon_map_zensus_mvgd_buildings:

	A final mapping table including all buildings used for residential and
cts, heat and electricity timeseries. Including census cells, mvgd bus_id,
building type (osm or synthetic)









The following datasets from the database are mainly used for creation:


	
	openstreetmap.osm_buildings_filtered:

	Table of OSM-buildings filtered by tags to selecting residential and cts
buildings only.







	
	openstreetmap.osm_amenities_shops_filtered:

	Table of OSM-amenities filtered by tags to select cts only.







	
	openstreetmap.osm_amenities_not_in_buildings_filtered:

	Table of amenities which do not intersect with any building from
openstreetmap.osm_buildings_filtered







	
	openstreetmap.osm_buildings_synthetic:

	Table of synthetic residential buildings







	
	boundaries.egon_map_zensus_buildings_filtered_all:

	Mapping table of census cells and buildings filtered even if population
in census cell = 0.







	
	demand.egon_demandregio_zensus_electricity:

	Table of annual electricity load demand for residential and cts at census
cell level. Residential load demand is derived from aggregated residential
building profiles. DemandRegio CTS load demand at NUTS3 is distributed to
census cells linearly to heat demand from peta5.







	
	demand.egon_peta_heat:

	Table of annual heat load demand for residential and cts at census cell
level from peta5.







	
	demand.egon_etrago_electricity_cts:

	Scaled cts electricity time series for every MV substation. Derived from
DemandRegio SLP for selected economic sectors at nuts3. Scaled with annual
demand from demand.egon_demandregio_zensus_electricity







	
	demand.egon_etrago_heat_cts:

	Scaled cts heat time series for every MV substation. Derived from
DemandRegio SLP Gas for selected economic sectors at nuts3. Scaled with
annual demand from demand.egon_peta_heat.









What is the goal?

To disaggregate cts heat and electricity time series from MV substation level
to geo-referenced buildings, the annual demand from DemandRegio and Peta5 is
used to identify census cells with load demand. We use Openstreetmap data and
filter tags to identify buildings and count the  amenities within. The number
of amenities and the annual demand serve to assign a demand share of the MV
substation profile to the building.

What is the challenge?

The OSM, DemandRegio and Peta5 dataset differ from each other. The OSM dataset
is a community based dataset which is extended throughout and does not claim to
be complete. Therefore, not all census cells which have a demand assigned by
DemandRegio or Peta5 methodology also have buildings with respective tags or
sometimes even any building at all. Furthermore, the substation load areas are
determined dynamically in a previous dataset. Merging these datasets different
scopes (census cell shapes, building shapes) and their inconsistencies need to
be addressed. For example: not yet tagged buildings or amenities in OSM, or
building shapes exceeding census cells.

How are these datasets combined?

The methodology for heat and electricity is the same and only differs in the
annual demand and MV/HV Substation profile. In a previous dataset
(openstreetmap), we filter all OSM buildings and amenities for tags, we relate
to the cts sector. Amenities are mapped to intersecting buildings and then
intersected with the annual demand which exists at census cell level. We obtain
census cells with demand and amenities and without amenities. If there is no
data on amenities, n synthetic ones are assigned to existing buildings. We use
the median value of amenities/census cell for n and all filtered buildings +
synthetic residential buildings. If no building data is available a synthetic
buildings is randomly generated. This also happens for amenities which couldn’t
be assigned to any osm building. All census cells with an annual demand are
covered this way, and we obtain four different categories of buildings with
amenities:


	Buildings with amenities


	Synthetic buildings with amenities


	Buildings with synthetic amenities


	Synthetics buildings with synthetic amenities




The amenities are summed per census cell (of amenity) and building to derive
the building amenity share per census cell. Multiplied with the annual demand,
we receive the profile demand share for each cell. Some buildings exceed the
census cell shape and have amenities in different cells although mapped to one
building only. To have unique buildings the demand share is summed once more
per building id. This factor can now be used to obtain the profile for each
building.

A schematic flow chart exist in the correspondent issue #671:
https://github.com/openego/eGon-data/issues/671#issuecomment-1260740258

What are central assumptions during the data processing?


	We assume OSM data to be the most reliable and complete open source dataset.


	We assume building and amenity tags to be truthful and accurate.


	Mapping census to OSM data is not trivial. Discrepancies are substituted.


	Missing OSM buildings are generated for each amenity.


	Missing amenities are generated by median value of amenities/census cell.




Drawbacks and limitations of the data


	Shape of profiles for each building is similar within a MVGD and only scaled




with a different factor.
* MVGDs are generated dynamically. In case of buildings with amenities
exceeding MVGD borders, amenities which are assigned to a different MVGD than
the assigned building centroid, the amenities are dropped for sake of
simplicity. One building should not have a connection to two MVGDs.
* The completeness of the OSM data depends on community contribution and is
crucial to the quality of our results.
* Randomly selected buildings and generated amenities may inadequately reflect
reality, but are chosen for sake of simplicity as a measure to fill data gaps.
* Since this dataset is a cascade after generation of synthetic residential
buildings also check drawbacks and limitations in hh_buildings.py.
* Synthetic buildings may be placed within osm buildings which exceed multiple
census cells. This is currently accepted but may be solved in  #953
* Scattered high peak loads occur and might lead to single MV grid connections
in ding0. In some cases this might not be viable. Postprocessing is needed and
may be solved in #954.


Example Query

Notes

This module docstring is rather a dataset documentation. Once, a decision
is made in … the content of this module docstring needs to be moved to
docs attribute of the respective dataset class.


	
class BuildingHeatPeakLoads(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
peak_load_in_w

	




	
scenario

	




	
sector

	








	
class CtsBuildings(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom_building

	




	
id

	




	
n_amenities_inside

	




	
serial

	




	
source

	




	
zensus_population_id

	








	
class CtsDemandBuildings(dependencies)

	Bases: egon.data.datasets.Dataset






	
class EgonCtsElectricityDemandBuildingShare(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
bus_id

	




	
profile_share

	




	
scenario

	








	
class EgonCtsHeatDemandBuildingShare(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
bus_id

	




	
profile_share

	




	
scenario

	








	
amenities_without_buildings()

	Amenities which have no buildings assigned and are in a cell with cts
demand are determined.


	Returns

	pd.DataFrame – Table of amenities without buildings










	
assign_voltage_level_to_buildings()

	Add voltage level to all buildings by summed peak demand.

All entries with same building id get the voltage level corresponding
to their summed residential and cts peak demand.






	
buildings_with_amenities()

	Amenities which are assigned to buildings are determined and grouped per
building and zensus cell. Buildings covering multiple cells therefore
exists multiple times but in different zensus cells. This is necessary to
cover as many cells with a cts demand as possible. If buildings exist in
multiple mvgds (bus_id) , only the amenities within the same as the
building centroid are kept. If as a result, a census cell is uncovered
by any buildings, a synthetic amenity is placed. The buildings are
aggregated afterwards during the calculation of the profile_share.


	Returns

	
	df_buildings_with_amenities (gpd.GeoDataFrame) – Contains all buildings with amenities per zensus cell.


	df_lost_cells (gpd.GeoDataFrame) – Contains synthetic amenities in lost cells. Might be empty















	
buildings_without_amenities()

	Buildings (filtered and synthetic) in cells with
cts demand but no amenities are determined.


	Returns

	df_buildings_without_amenities (gpd.GeoDataFrame) – Table of buildings without amenities in zensus cells
with cts demand.










	
calc_building_demand_profile_share(df_cts_buildings, scenario='eGon2035', sector='electricity')

	Share of cts electricity demand profile per bus for every selected building
is calculated. Building-amenity share is multiplied with census cell share
to get the substation bus profile share for each building. The share is
grouped and aggregated per building as some buildings exceed the shape of
census cells and have amenities assigned from multiple cells. Building
therefore get the amenity share of all census cells.


	Parameters

	
	df_cts_buildings (gpd.GeoDataFrame) – Table of all buildings with cts demand assigned


	scenario (str) – Scenario for which the share is calculated.


	sector (str) – Sector for which the share is calculated.






	Returns

	df_building_share (pd.DataFrame) – Table of bus profile share per building










	
calc_census_cell_share(scenario, sector)

	The profile share for each census cell is calculated by it’s
share of annual demand per substation bus. The annual demand
per cell is defined by DemandRegio/Peta5. The share is for both
scenarios identical as the annual demand is linearly scaled.


	Parameters

	
	scenario (str) – Scenario for which the share is calculated: “eGon2035” or “eGon100RE”


	sector (str) – Scenario for which the share is calculated: “electricity” or “heat”






	Returns

	df_census_share (pd.DataFrame)










	
calc_cts_building_profiles(bus_ids, scenario, sector)

	Calculate the cts demand profile for each building. The profile is
calculated by the demand share of the building per substation bus.


	Parameters

	
	bus_ids (list of int) – Ids of the substation for which selected building profiles are
calculated.


	scenario (str) – Scenario for which the share is calculated: “eGon2035” or “eGon100RE”


	sector (str) – Sector for which the share is calculated: “electricity” or “heat”






	Returns

	df_building_profiles (pd.DataFrame) – Table of demand profile per building. Column names are building IDs
and index is hour of the year as int (0-8759).










	
cells_with_cts_demand_only(df_buildings_without_amenities)

	Cells with cts demand but no amenities or buildilngs
are determined.


	Returns

	df_cells_only_cts_demand (gpd.GeoDataFrame) – Table of cells with cts demand but no amenities or buildings










	
create_synthetic_buildings(df, points=None, crs='EPSG:3035')

	Synthetic buildings are generated around points.


	Parameters

	
	df (pd.DataFrame) – Table of census cells


	points (gpd.GeoSeries or str) – List of points to place buildings around or column name of df


	crs (str) – CRS of result table






	Returns

	df (gpd.GeoDataFrame) – Synthetic buildings










	
cts_buildings()

	Assigns CTS demand to buildings and calculates the respective demand
profiles. The demand profile per substation are disaggregated per
annual demand share of each census cell and by the number of amenities
per building within the cell. If no building data is available,
synthetic buildings are generated around the amenities. If no amenities
but cts demand is available, buildings are randomly selected. If no
building nor amenity is available, random synthetic buildings are
generated. The demand share is stored in the database.

Cells with CTS demand, amenities and buildings do not change within
the scenarios, only the demand itself. Therefore scenario eGon2035
can be used universally to determine the cts buildings but not for
the demand share.






	
cts_electricity()

	
	Calculate cts electricity demand share of hvmv substation profile

	for buildings.










	
cts_heat()

	
	Calculate cts electricity demand share of hvmv substation profile

	for buildings.










	
delete_synthetic_cts_buildings()

	All synthetic cts buildings are deleted from the DB. This is necessary if
the task is run multiple times as the existing synthetic buildings
influence the results.






	
get_cts_electricity_peak_load()

	Get electricity peak load of all CTS buildings for both scenarios and
store in DB.






	
get_cts_heat_peak_load()

	Get heat peak load of all CTS buildings for both scenarios and store in DB.






	
get_peta_demand(mvgd, scenario)

	Retrieve annual peta heat demand for CTS for either
eGon2035 or eGon100RE scenario.


	Parameters

	
	mvgd (int) – ID of substation for which to get CTS demand.


	scenario (str) – Possible options are eGon2035 or eGon100RE






	Returns

	df_peta_demand (pd.DataFrame) – Annual residential heat demand per building and scenario. Columns of
the dataframe are zensus_population_id and demand.










	
place_buildings_with_amenities(df, amenities=None, max_amenities=None)

	Building centroids are placed randomly within census cells.
The Number of buildings is derived from n_amenity_inside, the selected
method and number of amenities per building.


	Returns

	df (gpd.GeoDataFrame) – Table of buildings centroids










	
remove_double_bus_id(df_cts_buildings)

	This is an backup adhoc fix if there should still be a building which
is assigned to 2 substations. In this case one of the buildings is just
dropped. As this currently accounts for only one building with one amenity
the deviation is neglectable.






	
select_cts_buildings(df_buildings_wo_amenities, max_n)

	N Buildings (filtered and synthetic) in each cell with
cts demand are selected. Only the first n buildings
are taken for each cell. The buildings are sorted by surface
area.


	Returns

	df_buildings_with_cts_demand (gpd.GeoDataFrame) – Table of buildings













          

      

      

    

  

    
      
          
            
  
hh_buildings

Household electricity demand time series for scenarios in 2035 and 2050
assigned to OSM-buildings.

Assignment of household electricity demand timeseries to OSM buildings and
generation of randomly placed synthetic 5x5m buildings if no sufficient OSM-data
available in the respective cencus cell.

The resulting data is stored in separate tables


	
	openstreetmap.osm_buildings_synthetic:

	Lists generated synthetic building with id and cell_id







	
	demand.egon_household_electricity_profile_of_buildings:

	Mapping of demand timeseries and buildings including cell_id, building
area and peak load









Both tables are created within map_houseprofiles_to_buildings().

The following datasets from the database are used for creation:


	
	demand.household_electricity_profiles_in_census_cells:

	Lists references and scaling parameters to time series data for each
household in a cell by identifiers. This table is fundamental for creating
subsequent data like demand profiles on MV grid level or for determining
the peak load at load. Only the profile reference and the cell identifiers
are used.







	
	society.egon_destatis_zensus_apartment_building_population_per_ha:

	Lists number of apartments, buildings and population for each census cell.







	
	boundaries.egon_map_zensus_buildings_residential:

	List of OSM tagged buildings which are considered to be residential.









What is the goal?

To assign every household demand timeseries, which already exist at cell level,
to a specific OSM building.

What is the challenge?

The census and the OSM dataset differ from each other. The census uses
statistical methods and therefore lacks accuracy at high spatial resolution.
The OSM datasets is community based dataset which is extended throughout and
does not claim to be complete. By merging these datasets inconsistencies need
to be addressed. For example: not yet tagged buildings in OSM or new building
areas not considered in census 2011.

How are these datasets combined?

The assignment of household demand timeseries to buildings takes place at cell
level. Within each cell a pool of profiles exists, produced by the ‘HH Demand”
module. These profiles are randomly assigned to a filtered list of OSM buildings
within this cell. Every profile is assigned to a building and every building
get a profile assigned if there is enough households by the census data. If
there are more profiles then buildings, all additional profiles are randomly
assigned. Therefore multiple profiles can be assigned to one building, making
it a multi-household building.

What are central assumptions during the data processing?


	Mapping zensus data to OSM data is not trivial. Discrepancies are substituted.


	Missing OSM buildings are generated by census building count.


	If no census building count data is available, the number of buildings is




derived by an average rate of households/buildings applied to the number of
households.

Drawbacks and limitations of the data


	Missing OSM buildings in cells without census building count are derived by




an average rate of households/buildings applied to the number of households.
As only whole houses can exist, the substitute is ceiled to the next higher
integer. Ceiling is applied to avoid rounding to amount of 0 buildings.


	As this datasets is a cascade after profile assignement at census cells




also check drawbacks and limitations in hh_profiles.py.


Example Query


	Get a list with number of houses, households and household types per census cell




SELECT t1.cell_id, building_count, hh_count, hh_types
    FROM(
        SELECT cell_id, Count(distinct(building_id)) as building_count,
        count(profile_id) as hh_count
            FROM demand.egon_household_electricity_profile_of_buildings
        Group By cell_id
    ) as t1
FULL OUTER JOIN(
    SELECT cell_id, array_agg(array[cast(hh_10types as char),
     hh_type]) as hh_types
    FROM society.egon_destatis_zensus_household_per_ha_refined
    GROUP BY cell_id
    ) as t2
ON t1.cell_id = t2.cell_id





Notes

This module docstring is rather a dataset documentation. Once, a decision
is made in … the content of this module docstring needs to be moved to
docs attribute of the respective dataset class.


	
class BuildingElectricityPeakLoads(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
peak_load_in_w

	




	
scenario

	




	
sector

	




	
voltage_level

	








	
class HouseholdElectricityProfilesOfBuildings(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
cell_id

	




	
id

	




	
profile_id

	








	
class OsmBuildingsSynthetic(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area

	




	
building

	




	
cell_id

	




	
geom_building

	




	
geom_point

	




	
id

	




	
n_amenities_inside

	








	
generate_mapping_table(egon_map_zensus_buildings_residential_synth, egon_hh_profile_in_zensus_cell)

	Generate a mapping table for hh profiles to buildings.

All hh demand profiles are randomly assigned to buildings within the same
cencus cell.


	
	profiles > buildings: buildings can have multiple profiles but every

	building gets at least one profile







	profiles < buildings: not every building gets a profile





	Parameters

	
	egon_map_zensus_buildings_residential_synth (pd.DataFrame) – Table with OSM and synthetic buildings ids per census cell


	egon_hh_profile_in_zensus_cell (pd.DataFrame) – Table mapping hh demand profiles to census cells






	Returns

	pd.DataFrame – Table with mapping of profile ids to buildings with OSM ids










	
generate_synthetic_buildings(missing_buildings, edge_length)

	Generate synthetic square buildings in census cells for every entry
in missing_buildings.

Generate random placed synthetic buildings incl geom data within the bounds
of the cencus cell. Buildings have each a square area with edge_length^2.


	Parameters

	
	missing_buildings (pd.Series or pd.DataFrame) – Table with cell_ids and building number


	edge_length (int) – Edge length of square synthetic building in meter






	Returns

	pd.DataFrame – Table with generated synthetic buildings, area, cell_id and geom data










	
get_building_peak_loads()

	Peak loads of buildings are determined.

Timeseries for every building are accumulated, the maximum value
determined and with the respective nuts3 factor scaled for 2035 and 2050
scenario.


Note

In test-mode ‘SH’ the iteration takes place by ‘cell_id’ to avoid
intensive RAM usage. For whole Germany ‘nuts3’ are taken and
RAM > 32GB is necessary.








	
map_houseprofiles_to_buildings()

	Cencus hh demand profiles are assigned to buildings via osm ids. If no OSM
ids available, synthetic buildings are generated. A list of the generated
buildings and supplementary data as well as the mapping table is stored
in the db.


	synthetic_buildings:

	schema: openstreetmap
tablename: osm_buildings_synthetic



	mapping_profiles_to_buildings:

	schema: demand
tablename: egon_household_electricity_profile_of_buildings





Notes






	
match_osm_and_zensus_data(egon_hh_profile_in_zensus_cell, egon_map_zensus_buildings_residential)

	Compares OSM buildings and census hh demand profiles.

OSM building data and hh demand profiles based on census data is compared.
Census cells with only profiles but no osm-ids are identified to generate
synthetic buildings. Census building count is used, if available, to define
number of missing buildings. Otherwise, the overall mean profile/building
rate is used to derive the number of buildings from the number of already
generated demand profiles.


	Parameters

	
	egon_hh_profile_in_zensus_cell (pd.DataFrame) – Table mapping hh demand profiles to census cells


	egon_map_zensus_buildings_residential (pd.DataFrame) – Table with buildings osm-id and cell_id






	Returns

	pd.DataFrame – Table with cell_ids and number of missing buildings










	
reduce_synthetic_buildings(mapping_profiles_to_buildings, synthetic_buildings)

	Reduced list of synthetic buildings to amount actually used.

Not all are used, due to randomised assignment with replacing
Id’s are adapted to continuous number sequence following
openstreetmap.osm_buildings









          

      

      

    

  

    
      
          
            
  
hh_profiles

Household electricity demand time series for scenarios in 2035 and 2050 at
census cell level.

Electricity demand data for households in Germany in 1-hourly resolution for
an entire year. Spatially, the data is resolved to 100 x 100 m cells and
provides individual and distinct time series for each household in a cell.
The cells are defined by the dataset Zensus 2011.

The resulting data is stored in two separate tables


	demand.household_electricity_profiles_in_census_cells:
Lists references and scaling parameters to time series data for each
household in a cell by identifiers. This table is fundamental for creating
subsequent data like demand profiles on MV grid level or for determining
the peak load at load area level.
The table is created by:func:houseprofiles_in_census_cells.


	demand.household_electricity_profiles_hvmv_substation:
Household electricity demand profiles aggregated at MV grid district level
in MWh. Primarily used to create the eTraGo data model.
The table is created with mv_grid_district_HH_electricity_load().




The following datasets are used for creating the data:


	Electricity demand time series for household categories
produced by demand profile generator (DPG) from Fraunhofer IEE
(see get_iee_hh_demand_profiles_raw())


	Spatial information about people living in households by Zensus 2011 at
federal state level



	Type of household (family status)


	Age


	Number of people









	Spatial information about number of households per ha, categorized by type
of household (family status) with 5 categories (also from Zensus 2011)


	Demand-Regio annual household demand at NUTS3 level




What is the goal?

To use the electricity demand time series from the demand profile generator
to created spatially reference household demand time series for Germany at a
resolution of 100 x 100 m cells.

What is the challenge?

The electricity demand time series produced by demand profile generator offer
12 different household profile categories.
To use most of them, the spatial information about the number of households
per cell (5 categories) needs to be enriched by supplementary data to match
the household demand profile categories specifications. Hence, 10 out of 12
different household profile categories can be distinguished by increasing
the number of categories of cell-level household data.

How are these datasets combined?


	Spatial information about people living in households by zensus (2011) at
federal state NUTS1 level :var:`df_zensus` is aggregated to be compatible
to IEE household profile specifications.



	exclude kids and reduce to adults and seniors


	group as defined in :var:`HH_TYPES`


	convert data from people living in households to number of households
by :var:`mapping_people_in_households`


	calculate fraction of fine household types (10) within subgroup of rough
household types (5) :var:`df_dist_households`









	Spatial information about number of households per ha
:var:`df_census_households_nuts3` is mapped to NUTS1 and NUTS3 level.
Data is refined with household subgroups via
:var:`df_dist_households` to :var:`df_census_households_grid_refined`.


	Enriched 100 x 100 m household dataset is used to sample and aggregate
household profiles. A table including individual profile id’s for each cell
and scaling factor to match Demand-Regio annual sum projections for 2035
and 2050 at NUTS3 level is created in the database as
demand.household_electricity_profiles_in_census_cells.




What are central assumptions during the data processing?


	Mapping zensus data to IEE household categories is not trivial. In
conversion from persons in household to number of
households, number of inhabitants for multi-person households is estimated
as weighted average in :var:`OO_factor`


	The distribution to refine household types at cell level are the same for
each federal state


	Refining of household types lead to float number of profiles drew at cell
level and need to be rounded to nearest int by np.rint().


	100 x 100 m cells are matched to NUTS via cells centroid location


	Cells with households in unpopulated areas are removed




Drawbacks and limitations of the data


	The distribution to refine household types at cell level are the same for
each federal state


	Household profiles aggregated annual demand matches Demand Regio demand at
NUTS-3 level, but it is not matching the demand regio time series profile


	Due to secrecy, some census data are highly modified under certain attributes





(quantity_q = 2). This cell data is not corrected, but excluded.





	There is deviation in the Census data from table to table. The statistical





methods are not stringent. Hence, there are cases in which data contradicts.





	Census data with attribute ‘HHTYP_FAM’ is missing for some cells with small





amount of households. This data is generated using the average share of
household types for cells with similar household number. For some cells the
summed amount of households per type deviates from the total number with
attribute ‘INSGESAMT’. As the profiles are scaled with demand-regio data at
nuts3-level the impact at a higher aggregation level is negligible.
For sake of simplicity, the data is not corrected.





	There are cells without household data but a population. A randomly chosen





household distribution is taken from a subgroup of cells with same population
value and applied to all cells with missing household distribution and the
specific population value.





Helper functions


	To access the DB, select specific profiles at various aggregation levels




use:func:get_hh_profiles_from_db’
* To access the DB, select specific profiles at various aggregation levels
and scale profiles use :func:`get_scaled_profiles_from_db

Notes

This module docstring is rather a dataset documentation. Once, a decision
is made in … the content of this module docstring needs to be moved to
docs attribute of the respective dataset class.


	
class EgonDestatisZensusHouseholdPerHaRefined(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
cell_id

	




	
characteristics_code

	




	
grid_id

	




	
hh_10types

	




	
hh_5types

	




	
hh_type

	




	
id

	




	
nuts1

	




	
nuts3

	








	
class EgonEtragoElectricityHouseholds(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
p_set

	




	
q_set

	




	
scn_name

	








	
class HouseholdDemands(dependencies)

	Bases: egon.data.datasets.Dataset






	
class HouseholdElectricityProfilesInCensusCells(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
cell_id

	




	
cell_profile_ids

	




	
factor_2035

	




	
factor_2050

	




	
grid_id

	




	
nuts1

	




	
nuts3

	








	
class IeeHouseholdLoadProfiles(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
id

	




	
load_in_wh

	




	
type

	








	
adjust_to_demand_regio_nuts3_annual(df_hh_profiles_in_census_cells, df_iee_profiles, df_demand_regio)

	Computes the profile scaling factor for alignment to demand regio data

The scaling factor can be used to re-scale each load profile such that the
sum of all load profiles within one NUTS-3 area equals the annual demand
of demand regio data.


	Parameters

	
	df_hh_profiles_in_census_cells (pd.DataFrame) – Result of assign_hh_demand_profiles_to_cells().


	df_iee_profiles (pd.DataFrame) – Household load profile data


	Index: Times steps as serial integers


	Columns: pd.MultiIndex with (HH_TYPE, id)






	df_demand_regio (pd.DataFrame) – Annual demand by demand regio for each NUTS-3 region and scenario year.
Index is pd.MultiIndex with tuple(scenario_year, nuts3_code).






	Returns

	pd.DataFrame – Returns the same data as assign_hh_demand_profiles_to_cells(),
but with filled columns factor_2035 and factor_2050.










	
assign_hh_demand_profiles_to_cells(df_zensus_cells, df_iee_profiles)

	Assign household demand profiles to each census cell.

A table including the demand profile ids for each cell is created by using
get_cell_demand_profile_ids(). Household profiles are randomly
sampled for each cell. The profiles are not replaced to the pool within
a cell but after.


	Parameters

	
	df_zensus_cells (pd.DataFrame) – Household type parameters. Each row representing one household. Hence,
multiple rows per zensus cell.


	df_iee_profiles (pd.DataFrame) – Household load profile data


	Index: Times steps as serial integers


	Columns: pd.MultiIndex with (HH_TYPE, id)










	Returns

	pd.DataFrame – Tabular data with one row represents one zensus cell.
The column cell_profile_ids contains
a list of tuples (see get_cell_demand_profile_ids()) providing a
reference to the actual load profiles that are associated with this
cell.










	
clean(x)

	Clean zensus household data row-wise

Clean dataset by


	converting ‘.’ and ‘-’ to str(0)


	removing brackets




Table can be converted to int/floats afterwards


	Parameters

	x (pd.Series) – It is meant to be used with df.applymap()



	Returns

	pd.Series – Re-formatted data row










	
create_missing_zensus_data(df_households_typ, df_missing_data, missing_cells)

	There is missing data for specific attributes in the zensus dataset because
of secrecy reasons. Some cells with only small amount of households are
missing with attribute HHTYP_FAM. However the total amount of households
is known with attribute INSGESAMT. The missing data is generated as average
share of the household types for cell groups with the same amount of
households.


	Parameters

	
	df_households_typ (pd.DataFrame) – Zensus households data


	df_missing_data (pd.DataFrame) – number of missing cells of group of amount of households


	missing_cells (dict) – dictionary with list of grids of the missing cells grouped by amount of
households in cell






	Returns

	df_average_split (pd.DataFrame) – generated dataset of missing cells










	
get_cell_demand_metadata_from_db(attribute, list_of_identifiers)

	Retrieve selection of household electricity demand profile mapping


	Parameters

	
	attribute (str) – attribute to filter the table


	nuts3


	nuts1


	cell_id






	list_of_identifiers (list of str/int) – nuts3/nuts1 need to be str
cell_id need to be int









See also

houseprofiles_in_census_cells()




	Returns

	pd.DataFrame – Selection of mapping of household demand profiles to zensus cells










	
get_cell_demand_profile_ids(df_cell, pool_size)

	Generates tuple of hh_type and zensus cell ids


	Takes a random sample of profile ids for given cell:

	
	if pool size >= sample size: without replacement


	if pool size < sample size: with replacement









	Parameters

	
	df_cell (pd.DataFrame) – Household type information for a single zensus cell


	pool_size (int) – Number of available profiles to select from






	Returns

	list of tuple – List of (hh_type, cell_id)










	
get_census_households_grid()

	Query census household data at 100x100m grid level from database. As
there is a divergence in the census household data depending which
attribute is used. There also exist cells without household but with
population data. The missing data in these cases are substituted. First
census household data with attribute ‘HHTYP_FAM’ is missing for some
cells with small amount of households. This data is generated using the
average share of household types for cells with similar household number.
For some cells the summed amount of households per type deviates from the
total number with attribute ‘INSGESAMT’. As the profiles are scaled with
demand-regio data at nuts3-level the impact at a higher aggregation level
is negligible. For sake of simplicity, the data is not corrected.


	Returns

	pd.DataFrame – census household data at 100x100m grid level










	
get_census_households_nuts1_raw()

	Get zensus age x household type data from egon-data-bundle

Dataset about household size with information about the categories:


	family type


	age class


	household size




for Germany in spatial resolution of federal states NUTS-1.

Data manually selected and retrieved from:
https://ergebnisse2011.zensus2022.de/datenbank/online
For reproducing data selection, please do:


	Search for: “1000A-3016”


	or choose topic: “Bevölkerung kompakt”


	Choose table code: “1000A-3016” with title “Personen: Alter
(11 Altersklassen) - Größe des privaten Haushalts - Typ des privaten
Haushalts (nach Familien/Lebensform)”





	Change setting “GEOLK1” to “Bundesländer (16)”




Data would be available in higher resolution
(“Landkreise und kreisfreie Städte (412)”), but only after registration.

The downloaded file is called ‘Zensus2011_Personen.csv’.


	Returns

	pd.DataFrame – Pre-processed zensus household data










	
get_hh_profiles_from_db(profile_ids)

	Retrieve selection of household electricity demand profiles


	Parameters

	profile_ids (list of str (str, int)) – (type)a00..(profile number) with number having exactly 4 digits






See also

houseprofiles_in_census_cells()




	Returns

	pd.DataFrame – Selection of household demand profiles










	
get_houseprofiles_in_census_cells()

	Retrieve household electricity demand profile mapping from database


See also

houseprofiles_in_census_cells()




	Returns

	pd.DataFrame – Mapping of household demand profiles to zensus cells










	
get_iee_hh_demand_profiles_raw()

	Gets and returns household electricity demand profiles from the
egon-data-bundle.

Household electricity demand profiles generated by Fraunhofer IEE.
Methodology is described in
:ref:`Erzeugung zeitlich hochaufgelöster Stromlastprofile für verschiedene
Haushaltstypen
<https://www.researchgate.net/publication/273775902_Erzeugung_zeitlich_hochaufgeloster_Stromlastprofile_fur_verschiedene_Haushaltstypen>`_.
It is used and further described in the following theses by:


	Jonas Haack:
“Auswirkungen verschiedener Haushaltslastprofile auf PV-Batterie-Systeme”
(confidential)


	Simon Ruben Drauz
“Synthesis of a heat and electrical load profile for single and
multi-family houses used for subsequent performance tests of a
multi-component energy system”,
http://dx.doi.org/10.13140/RG.2.2.13959.14248




Notes

The household electricity demand profiles have been generated for 2016
which is a leap year (8784 hours) starting on a Friday. The weather year
is 2011 and the heat timeseries 2011 are generated for 2011 too (cf.
dataset egon.data.datasets.heat_demand_timeseries.HTS), having
8760h and starting on a Saturday. To align the profiles, the first day of
the IEE profiles are deleted, resulting in 8760h starting on Saturday.


	Returns

	pd.DataFrame – Table with profiles in columns and time as index. A pd.MultiIndex is
used to distinguish load profiles from different EUROSTAT household
types.










	
get_load_timeseries(df_iee_profiles, df_hh_profiles_in_census_cells, cell_ids, year, aggregate=True, peak_load_only=False)

	Get peak load for one load area in MWh

The peak load is calculated in aggregated manner for a group of zensus
cells that belong to one load area (defined by cell_ids).


	Parameters

	
	df_iee_profiles (pd.DataFrame) – Household load profile data in Wh


	Index: Times steps as serial integers


	Columns: pd.MultiIndex with (HH_TYPE, id)




Used to calculate the peak load from.



	df_hh_profiles_in_census_cells (pd.DataFrame) – Return value of adjust_to_demand_regio_nuts3_annual().


	cell_ids (list) – Zensus cell ids that define one group of zensus cells that belong to
the same load area.


	year (int) – Scenario year. Is used to consider the scaling factor for aligning
annual demand to NUTS-3 data.


	aggregate (bool) – If true, all profiles are aggregated


	peak_load_only (bool) – If true, only the peak load value is returned (the type of the return
value is float). Defaults to False which returns the entire time
series as pd.Series.






	Returns

	pd.Series or float – Aggregated time series for given cell_ids or peak load of this time
series in MWh.










	
get_scaled_profiles_from_db(attribute, list_of_identifiers, year, aggregate=True, peak_load_only=False)

	Retrieve selection of scaled household electricity demand profiles


	Parameters

	
	attribute (str) – attribute to filter the table


	nuts3


	nuts1


	cell_id






	list_of_identifiers (list of str/int) – nuts3/nuts1 need to be str
cell_id need to be int


	year (int) –


	2035


	2050






	aggregate (bool) – If True, all profiles are summed. This uses a lot of RAM if a high
attribute level is chosen


	peak_load_only (bool) – If True, only peak load value is returned








Notes

Aggregate == False option can use a lot of RAM if many profiles are selected


	Returns

	pd.Series or float – Aggregated time series for given cell_ids or peak load of this time
series in MWh.










	
houseprofiles_in_census_cells()

	Allocate household electricity demand profiles for each census cell.

Creates a table that maps household electricity demand profiles to census
cells. Each row represents one cell and contains a list of profile IDs.

Use get_houseprofiles_in_census_cells() to retrieve the data from
the database as pandas






	
impute_missing_hh_in_populated_cells(df_census_households_grid)

	There are cells without household data but a population. A randomly
chosen household distribution is taken from a subgroup of cells with same
population value and applied to all cells with missing household
distribution and the specific population value. In the case, in which there
is no subgroup with household data of the respective population value, the
fallback is the subgroup with the last last smaller population value.


	Parameters

	df_census_households_grid (pd.DataFrame) – census household data at 100x100m grid level



	Returns

	pd.DataFrame – substituted census household data at 100x100m grid level










	
inhabitants_to_households(df_hh_people_distribution_abs)

	Convert number of inhabitant to number of household types

Takes the distribution of peoples living in types of households to
calculate a distribution of household types by using a people-in-household
mapping. Results are not rounded to int as it will be used to calculate
a relative distribution anyways.
The data of category ‘HHGROESS_KLASS’ in census households
at grid level is used to determine an average wherever the amount
of people is not trivial (OR, OO). Kids are not counted.


	Parameters

	df_hh_people_distribution_abs (pd.DataFrame) – Grouped census household data on NUTS-1 level in absolute values



	Returns

	df_dist_households (pd.DataFrame) – Distribution of households type










	
mv_grid_district_HH_electricity_load(scenario_name, scenario_year, drop_table=False)

	Aggregated household demand time series at HV/MV substation level

Calculate the aggregated demand time series based on the demand profiles
of each zensus cell inside each MV grid district. Profiles are read from
local hdf5-file.


	Parameters

	
	scenario_name (str) – Scenario name identifier, i.e. “eGon2035”


	scenario_year (int) – Scenario year according to scenario_name


	drop_table (bool) – Toggle to True for dropping table at beginning of this function.
Be careful, delete any data.






	Returns

	pd.DataFrame – Multiindexed dataframe with timestep and bus_id as indexers.
Demand is given in kWh.










	
process_nuts1_census_data(df_census_households_raw)

	Make data compatible with household demand profile categories

Removes and reorders categories which are not needed to fit data to
household types of IEE electricity demand time series generated by
demand-profile-generator (DPG).


	Kids (<15) are excluded as they are also excluded in DPG origin dataset


	Adults (15<65)


	Seniors (<65)





	Parameters

	df_census_households_raw (pd.DataFrame) – cleaned zensus household type x age category data



	Returns

	pd.DataFrame – Aggregated zensus household data on NUTS-1 level










	
proportionate_allocation(df_group, dist_households_nuts1, hh_10types_cluster)

	Household distribution at nuts1 are applied at census cell within group

To refine the hh_5types and keep the distribution at nuts1 level,
the household types are clustered and drawn with proportionate weighting.
The resulting pool is splitted into subgroups with sizes according to
the number of households of clusters in cells.


	Parameters

	
	df_group (pd.DataFrame) – Census household data at grid level for specific hh_5type cluster in
a federal state


	dist_households_nuts1 (pd.Series) – Household distribution of of hh_10types in a federal state


	hh_10types_cluster (list of str) – Cluster of household types to be refined to






	Returns

	pd.DataFrame – Refined household data with hh_10types of cluster at nuts1 level










	
refine_census_data_at_cell_level(df_census_households_grid, df_census_households_nuts1)

	The census data is processed to define the number and type of households
per zensus cell. Two subsets of the census data are merged to fit the
IEE profiles specifications. To do this, proportionate allocation is
applied at nuts1 level and within household type clusters.


	Header

	“characteristics_code”, “characteristics_text”, “mapping”





“1”, “Einpersonenhaushalte (Singlehaushalte)”, “SR; SO”
“2”, “Paare ohne Kind(er)”, “PR; PO”
“3”, “Paare mit Kind(ern)”, “P1; P2; P3”
“4”, “Alleinerziehende Elternteile”, “SK”
“5”, “Mehrpersonenhaushalte ohne Kernfamilie”, “OR; OO”


	Parameters

	
	df_census_households_grid (pd.DataFrame) – Aggregated zensus household data on 100x100m grid level


	df_census_households_nuts1 (pd.DataFrame) – Aggregated zensus household data on NUTS-1 level






	Returns

	pd.DataFrame – Number of hh types per census cell










	
regroup_nuts1_census_data(df_census_households_nuts1)

	Regroup census data and map according to demand-profile types.
For more information look at the respective publication:
https://www.researchgate.net/publication/273775902_Erzeugung_zeitlich_hochaufgeloster_Stromlastprofile_fur_verschiedene_Haushaltstypen


	Parameters

	df_census_households_nuts1 (pd.DataFrame) – census household data on NUTS-1 level in absolute values



	Returns

	df_dist_households (pd.DataFrame) – Distribution of households type










	
set_multiindex_to_profiles(hh_profiles)

	The profile id is split into type and number and set as multiindex.


	Parameters

	hh_profiles (pd.DataFrame) – Profiles



	Returns

	hh_profiles (pd.DataFrame) – Profiles with Multiindex










	
write_hh_profiles_to_db(hh_profiles)

	Write HH demand profiles of IEE into db. One row per profile type.
The annual load profile timeseries is an array.

schema: demand
tablename: iee_household_load_profiles


	Parameters

	hh_profiles (pd.DataFrame) – It is meant to be used with df.applymap()










	
write_refinded_households_to_db(df_census_households_grid_refined)

	







          

      

      

    

  

    
      
          
            
  
mapping


	
class EgonMapZensusMvgdBuildings(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
bus_id

	




	
electricity

	




	
heat

	




	
osm

	




	
sector

	




	
zensus_population_id

	








	
map_all_used_buildings()

	This function maps all used buildings from OSM and synthetic ones.








          

      

      

    

  

    
      
          
            
  
tools


	
psql_insert_copy(table, conn, keys, data_iter)

	Execute SQL statement inserting data


	Parameters

	
	table (pandas.io.sql.SQLTable)


	conn (sqlalchemy.engine.Engine or sqlalchemy.engine.Connection)


	keys (list of str) – Column names


	data_iter (Iterable that iterates the values to be inserted)













	
random_ints_until_sum(s_sum, m_max)

	Generate non-negative random integers < m_max summing to s_sum.






	
random_point_in_square(geom, tol)

	Generate a random point within a square


	Parameters

	
	geom (gpd.Series) – Geometries of square


	tol (float) – tolerance to square bounds






	Returns

	points (gpd.Series) – Series of random points










	
specific_int_until_sum(s_sum, i_int)

	Generate list i_int summing to s_sum. Last value will be <= i_int






	
timeit(func)

	Decorator for measuring function’s running time.






	
write_table_to_postgis(gdf, table, engine=Engine(postgresql+psycopg2://egon:***@127.0.0.1:59734/egon-data), drop=True)

	Helper function to append df data to table in db. Only predefined columns
are passed. Error will raise if column is missing. Dtype of columns are
taken from table definition.


	Parameters

	
	gdf (gpd.DataFrame) – Table of data


	table (declarative_base) – Metadata of db table to export to


	engine – connection to database db.engine()


	drop (bool) – Drop table before appending













	
write_table_to_postgres(df, db_table, drop=False, index=False, if_exists='append')

	Helper function to append df data to table in db. Fast string-copy is used.
Only predefined columns are passed. If column is missing in dataframe a
warning is logged. Dtypes of columns are taken from table definition. The
writing process happens in a scoped session.


	Parameters

	
	df (pd.DataFrame) – Table of data


	db_table (declarative_base) – Metadata of db table to export to


	drop (boolean, default False) – Drop db-table before appending


	index (boolean, default False) – Write DataFrame index as a column.


	if_exists ({‘fail’, ‘replace’, ‘append’}, default ‘append’) –


	fail: If table exists, do nothing.


	replace: If table exists, drop it, recreate it, and insert data.


	append: If table exists, insert data. Create if does not exist.



















          

      

      

    

  

    
      
          
            
  
gas_neighbours



	eGon100RE

	eGon2035

	gas_abroad





The central module containing all code dealing with gas neighbours


	
class GasNeighbours(dependencies)

	Bases: egon.data.datasets.Dataset








          

      

      

    

  

    
      
          
            
  
eGon100RE

Module containing code dealing with cross border gas pipelines for eGon100RE

In this module the cross border pipelines for H2 and CH4, exclusively
between Germany and its neighbouring countries, in eGon100RE are
defined and inserted in the database.


Dependecies (pipeline)



	
	dataset

	PypsaEurSec, GasNodesandPipes, HydrogenBusEtrago,





ElectricalNeighbours










Resulting tables



	grid.egon_etrago_link is completed








	
calculate_crossbordering_gas_grid_capacities_eGon100RE(cap_DE, DE_pipe_capacities_list)

	Attribute gas cross border grid capacities for eGon100RE

This function attributes to each cross border pipeline (H2 and
CH4) between Germany and its neighbouring countries its capacity.


	Parameters

	
	cap_DE (pandas.DataFrame) – List of the H2 and CH4 exchange capacity for each neighbouring
country of Germany.


	DE_pipe_capacities_list (pandas.DataFrame) – List of the cross border for H2 and CH4 pipelines between
Germany and its neighbouring countries in eGon100RE, with
geometry (geom and topo) but no capacity.






	Returns

	Crossbordering_pipe_capacities_list (pandas.DataFrame) – List of the cross border H2 and CH4 pipelines between
Germany and its neighbouring countries in eGon100RE.










	
define_DE_crossbording_pipes_geom_eGon100RE(scn_name='eGon100RE')

	Define the missing cross border gas pipelines in eGon100RE

This function defines the cross border pipelines (for H2 and CH4)
between Germany and its neighbouring countries. These pipelines
are defined as links and there are copied from the corresponding
CH4 cross border pipelines from eGon2035.


	Parameters

	scn_name (str) – Name of the scenario



	Returns

	gas_pipelines_list_DE (pandas.DataFrame) – List of the cross border H2 and CH4 pipelines between
Germany and its neighbouring countries in eGon100RE, with
geometry (geom and topo) but no capacity.










	
insert_gas_neigbours_eGon100RE()

	Insert missing gas cross border grid capacities for eGon100RE

This function insert the cross border pipelines for H2 and CH4,
exclusively between Germany and its neighbouring countries,
for eGon100RE in the database by executing the following steps:



	call of the function
define_DE_crossbording_pipes_geom_eGon100RE(), that
defines the cross border pipelines (H2 and CH4) between
Germany and its neighbouring countries


	call of the function
read_DE_crossbordering_cap_from_pes(), that calculates
the cross border total exchange capactities for H2 and CH4
between Germany and its neighbouring countries based on the
pypsa-eur-sec results


	call of the function
calculate_crossbordering_gas_grid_capacities_eGon100RE(),
that attributes to each cross border pipeline (H2 and CH4)
between Germany and its neighbouring countries its capacity


	insertion of the H2 and CH4 pipelines between Germany and its
neighbouring countries in the database with function
insert_gas_grid_capacities()








	Returns

	None










	
read_DE_crossbordering_cap_from_pes()

	Read gas pipelines cross border capacities from pes run

This function calculates the cross border total exchange
capactities for H2 and CH4 between Germany and its neighbouring
countries based on the pypsa-eur-sec results.


	Returns

	DE_pipe_capacities_list (pandas.DataFrame) – List of the H2 and CH4 exchange capacity for each neighbouring
country of Germany.













          

      

      

    

  

    
      
          
            
  
eGon2035

Central module containing code dealing with gas neighbours for eGon2035


	
calc_capacities()

	Calculates gas production capacities of neighbouring countries

For each neigbouring country, this function calculates the gas
generation capacity in 2035 using the function
calc_capacity_per_year() for 2030 and 2040 and
interpolates the results. These capacities include LNG import, as
well as conventional and biogas production.
Two conventional gas generators are added for Norway and Russia
interpolating the supply potential values from the TYNPD 2020
for 2030 and 2040.


	Returns

	grouped_capacities (pandas.DataFrame) – Gas production capacities per foreign node










	
calc_capacity_per_year(df, lng, year)

	Calculates gas production capacities for a specified year

For a specified year and for the foreign country nodes this function
calculates the gas production capacities, considering the gas
(conventional and bio) production capacities from TYNDP data and the
LNG import capacities from Scigrid gas data.


	The columns of the returned dataframe are the following:

	
	Value_bio_year: biogas production capacity (in GWh/d)


	Value_conv_year: conventional gas production capacity including
LNG imports (in GWh/d)


	CH4_year: total gas production capacity (in GWh/d). This value
is calculated using the peak production value from the TYNDP.


	e_nom_max_year: total gas production capacity representative
for the whole year (in GWh/d). This value is calculated using
the average production value from the TYNDP and will then be
used to limit the energy that can be generated in one year.


	share_LNG_year: share of LGN import capacity in the total gas
production capacity


	share_conv_pipe_year: share of conventional gas extraction
capacity in the total gas production capacity


	share_bio_year: share of biogas production capacity in the
total gas production capacity









	Parameters

	
	df (pandas.DataFrame) – Gas (conventional and bio) production capacities from TYNDP (in GWh/d)


	lng (pandas.Series) – LNG terminal capacities per foreign country node (in GWh/d)


	year (int) – Year to calculate gas production capacities for






	Returns

	df_year (pandas.DataFrame) – Gas production capacities (in GWh/d) per foreign country node










	
calc_ch4_storage_capacities()

	Calculate CH4 storage capacities for neighboring countries


	Returns

	
	ch4_storage_capacities (pandas.DataFrame)


	Methane gas storage capacities per country in MWh















	
calc_global_ch4_demand(Norway_global_demand_1y)

	Calculates global CH4 demands abroad for eGon2035 scenario

The data comes from TYNDP 2020 according to NEP 2021 from the
scenario ‘Distributed Energy’; linear interpolates between 2030
and 2040.


	Returns

	pandas.DataFrame – Global (yearly) CH4 final demand per foreign node










	
calc_global_power_to_h2_demand()

	Calculate H2 demand abroad for eGon2035 scenario

Calculates global power demand abroad linked to H2 production.
The data comes from TYNDP 2020 according to NEP 2021 from the
scenario ‘Distributed Energy’; linear interpolate between 2030
and 2040.


	Returns

	global_power_to_h2_demand (pandas.DataFrame) – Global hourly power-to-h2 demand per foreign node










	
calculate_ch4_grid_capacities()

	Calculates CH4 grid capacities for foreign countries based on TYNDP-data


	Returns

	Neighbouring_pipe_capacities_list (pandas.DataFrame) – Table containing the CH4 grid capacity for each foreign
country










	
calculate_ocgt_capacities()

	Calculate gas turbine capacities abroad for eGon2035

Calculate gas turbine capacities abroad for eGon2035 based on TYNDP
2020, scenario “Distributed Energy”; interpolated between 2030 and 2040


	Returns

	df_ocgt (pandas.DataFrame) – Gas turbine capacities per foreign node










	
get_foreign_gas_bus_id(carrier='CH4')

	Calculate the etrago bus id based on the geometry

Map node_ids from TYNDP and etragos bus_id


	Parameters

	carrier (str) – Name of the carrier



	Returns

	pandas.Series – List of mapped node_ids from TYNDP and etragos bus_id










	
grid()

	Insert data from TYNDP 2020 according to NEP 2021
Scenario ‘Distributed Energy; linear interpolate between 2030 and 2040


	Returns

	None










	
import_ch4_demandTS()

	Calculate global CH4 demand in Norway and CH4 demand profile

Import from the PyPSA-eur-sec run the time series of residential
rural heat per neighbor country. This time series is used to
calculate:



	the global (yearly) heat demand of Norway
(that will be supplied by CH4)


	the normalized CH4 hourly resolved demand profile








	Returns

	
	Norway_global_demand (Float) – Yearly heat demand of Norway in MWh


	neighbor_loads_t (pandas.DataFrame) – Normalized CH4 hourly resolved demand profiles per neighbor country















	
insert_ch4_demand(global_demand, normalized_ch4_demandTS)

	Insert CH4 demands abroad into the database for eGon2035


	Parameters

	
	global_demand (pandas.DataFrame) – Global CH4 demand per foreign node in 1 year


	gas_demandTS (pandas.DataFrame) – Normalized time series of the demand per foreign country






	Returns

	None










	
insert_generators(gen)

	Insert gas generators for foreign countries into the database

Insert gas generators for foreign countries into the database.
The marginal cost of the methane is calculated as the sum of the
imported LNG cost, the conventional natural gas cost and the
biomethane cost, weighted by their share in the total import/
production capacity.
LNG gas is considered to be 30% more expensive than the natural gas
transported by pipelines (source: iwd, 2022).


	Parameters

	gen (pandas.DataFrame) – Gas production capacities per foreign node and energy carrier



	Returns

	None










	
insert_ocgt_abroad()

	Insert gas turbine capacities abroad for eGon2035 in the database


	Parameters

	df_ocgt (pandas.DataFrame) – Gas turbine capacities per foreign node



	Returns

	None










	
insert_power_to_h2_demand(global_power_to_h2_demand)

	Insert H2 demands into database for eGon2035


	Parameters

	global_power_to_h2_demand (pandas.DataFrame) – Global hourly power-to-h2 demand per foreign node



	Returns

	None










	
insert_storage(ch4_storage_capacities)

	Insert CH4 storage capacities into the database for eGon2035


	Parameters

	ch4_storage_capacities (pandas.DataFrame) – Methane gas storage capacities per country in MWh



	Returns

	None










	
read_LNG_capacities()

	Read LNG import capacities from Scigrid gas data


	Returns

	IGGIELGN_LNGs (pandas.Series) – LNG terminal capacities per foreign country node (in GWh/d)










	
tyndp_gas_demand()

	Insert gas demands abroad for eGon2035

Insert CH4 and H2 demands abroad for eGon2035 by executing the
following steps:



	
	CH4

	
	Calculation of the global CH4 demand in Norway and the
CH4 demand profile by executing the function
import_ch4_demandTS()


	Calculation of the global CH4 demands by executing the
function calc_global_ch4_demand()


	Insertion of the CH4 loads and their associated time
series in the database by executing the function
insert_ch4_demand()










	
	H2

	
	Calculation of the global power demand abroad linked
to H2 production by executing the function
calc_global_power_to_h2_demand()


	Insertion of these loads in the database by executing the
function insert_power_to_h2_demand()
















	Returns

	None










	
tyndp_gas_generation()

	Insert data from TYNDP 2020 according to NEP 2021
Scenario ‘Distributed Energy’; linear interpolate between 2030 and 2040


	Returns

	None












          

      

      

    

  

    
      
          
            
  
gas_abroad

Module containing functions to insert gas abroad

In this module, functions used to insert the gas components (H2 and
CH4) abroad for eGon2035 and eGon100RE are defined.


	
insert_gas_grid_capacities(Neighbouring_pipe_capacities_list, scn_name)

	Insert crossbordering gas pipelines into the database

This function inserts a list of crossbordering gas pipelines after
cleaning the database.
For eGon2035, all the CH4 crossbordering pipelines are inserted
(no H2 grid in this scenario).
For eGon100RE, only the crossbordering pipelines with Germany
are inserted (the other ones are inserted in PypsaEurSec),
but in this scenario there are H2 and CH4 pipelines.


	Parameters

	
	Neighbouring_pipe_capacities_list (pandas.DataFrame) – List of the crossbordering gas pipelines


	scn_name (str) – Name of the scenario






	Returns

	None












          

      

      

    

  

    
      
          
            
  
heat_demand

Central module containing all code dealing with the future heat demand import.

This module obtains the residential and service-sector heat demand data for
2015 from Peta5.0.1, calculates future heat demands and saves them in the
database with assigned census cell IDs.


	
class EgonPetaHeat(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
demand

	




	
id

	




	
scenario

	




	
sector

	




	
zensus_population_id

	








	
class HeatDemandImport(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the annual heat demand per census cell for each scenario

This dataset downloads the heat demand raster data for private households
and CTS from Peta 5.0.1 (https://s-eenergies-open-data-euf.hub.arcgis.com/maps/d7d18b63250240a49eb81db972aa573e/about)
and stores it into files in the working directory.
The data from Peta 5.0.1 represents the status quo of the year 2015.
To model future heat demands, the data is scaled to meet target values
from external sources. These target values are defined for each scenario
in ScenarioParameters.


	Dependencies

	
	ScenarioParameters


	Vg250


	ZensusVg250






	Resulting tables

	
	demand.egon_peta_heat is created and filled









	
name = 'heat-demands'

	




	
version = '0.0.1'

	








	
add_metadata()

	Writes metadata JSON string into table comment.






	
adjust_residential_heat_to_zensus(scenario)

	Adjust residential heat demands to fit to zensus population.

In some cases, Peta assigns residential heat demand to unpopulated cells.
This can be caused by the different population data used in Peta or
buildings in zenus cells without a population
(see egon.data.importing.zensus.adjust_zensus_misc())

Residential heat demand in cells without zensus population is dropped.
Residential heat demand in cells with zensus population is scaled to meet
the overall residential heat demands.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	None










	
cutout_heat_demand_germany()

	Save cutouts of Germany’s 2015 heat demand densities from Europe-wide tifs.


	Get the German state boundaries


	Load the unzip 2015 heat demand data (Peta5_0_1) and


	Cutout Germany’s residential and service-sector heat demand densities


	Save the cutouts as tiffs





	Parameters

	None



	Returns

	None





Notes

The alternative of cutting out Germany from the pan-European raster
based on German census cells, instead of using state boundaries with
low resolution (to avoid inaccuracies), was not implemented in order to
achieve consistency with other datasets (e.g. egon_mv_grid_district).
Besides, all attempts to read, (union) and load cells from the local
database failed, but were documented as commented code within this
function and afterwards removed.
If you want to have a look at the comments, please check out commit
ec3391e182215b32cd8b741557a747118ab61664, which is the last commit
still containing them.

Also the usage of a buffer around the boundaries and the subsequent
selection of German cells was not implemented.
could be used, but then it must be ensured that later only heat demands
of cells belonging to Germany are used.






	
download_peta5_0_1_heat_demands()

	Download Peta5.0.1 tiff files.

The downloaded data contain residential and service-sector heat demands
per hectar grid cell for 2015.


	Parameters

	None



	Returns

	None





Notes

The heat demand data in the Peta5.0.1 dataset are assumed not change.
An upgrade to a higher Peta version is currently not foreseen.
Therefore, for the version management we can assume that the dataset
will not change, unless the code is changed.






	
future_heat_demand_germany(scenario_name)

	Calculate the future residential and service-sector heat demand per ha.

The calculation is based on Peta5_0_1 heat demand densities, cutout for
Germany, for the year 2015. The given scenario name is used to read the
adjustment factors for the heat demand rasters from the scenario table.


	Parameters

	scenario_name (str) – Selected scenario name for which assumptions will be loaded.



	Returns

	None





Notes

None






	
heat_demand_to_db_table()

	Import heat demand rasters and convert them to vector data.

Specify the rasters to import as raster file patterns (file type and
directory containing raster files, which all will be imported).
The rasters are stored in a temporary table called “heat_demand_rasters”.
The final demand data, having the census IDs as foreign key (from the
census population table), are genetated
by the provided sql script (raster2cells-and-centroids.sql) and
are stored in the table “demand.egon_peta_heat”.


	Parameters

	None



	Returns

	None





Notes

Please note that the data from “demand.egon_peta_heat” is deleted
prior to the import, so make sure you’re not loosing valuable data.






	
scenario_data_import()

	Call all heat demand import related functions.

This function executes the functions that download, unzip and adjust
the heat demand distributions from Peta5.0.1
and that save the future heat demand distributions for Germany as tiffs
as well as with census grid IDs as foreign key in the database.


	Parameters

	None



	Returns

	None





Notes

None






	
unzip_peta5_0_1_heat_demands()

	Unzip the downloaded Peta5.0.1 tiff files.


	Parameters

	None



	Returns

	None





Notes

It is assumed that the Peta5.0.1 dataset does not change and that the
version number does not need to be checked.








          

      

      

    

  

    
      
          
            
  
heat_demand_timeseries



	daily

	idp_pool

	service_sector






	
class EgonEtragoHeatCts(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
p_set

	




	
scn_name

	








	
class EgonEtragoTimeseriesIndividualHeating(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
dist_aggregated_mw

	




	
scenario

	








	
class EgonIndividualHeatingPeakLoads(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
scenario

	




	
w_th

	








	
class EgonTimeseriesDistrictHeating(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area_id

	




	
dist_aggregated_mw

	




	
scenario

	








	
class HeatTimeSeries(dependencies)

	Bases: egon.data.datasets.Dataset

Chooses heat demand profiles for each residential and CTS building

This dataset creates heat demand profiles in an hourly resoultion.
Time series for CTS buildings are created using the SLP-gas method implemented
in the demandregio disagregator with the function export_etrago_cts_heat_profiles()
and stored in the database.
Time series for residential buildings are created based on a variety of synthetical created
individual demand profiles that are part of DataBundle.
This method is desribed within the functions and in this publication:


C. Büttner, J. Amme, J. Endres, A. Malla, B. Schachler, I. Cußmann,
Open modeling of electricity and heat demand curves for all
residential buildings in Germany, Energy Informatics 5 (1) (2022) 21.
doi:10.1186/s42162-022-00201-y.





	Dependencies

	
	DataBundle


	DemandRegio


	HeatDemandImport


	DistrictHeatingAreas


	Vg250


	ZensusMvGridDistricts


	hh_demand_buildings_setup


	WeatherData






	Resulting tables

	
	demand.egon_timeseries_district_heating is created and filled


	demand.egon_etrago_heat_cts is created and filled


	demand.egon_heat_timeseries_selected_profiles is created and filled


	demand.egon_daily_heat_demand_per_climate_zone
is created and filled


	boundaries.egon_map_zensus_climate_zones is created and filled









	
name = 'HeatTimeSeries'

	




	
version = '0.0.7'

	








	
calulate_peak_load(df, scenario)

	




	
create_district_heating_profile(scenario, area_id)

	Create heat demand profile for district heating grid including demands of
households and service sector.


	Parameters

	
	scenario (str) – Name of the selected scenario.


	area_id (int) – Index of the selected district heating grid






	Returns

	df (pandas,DataFrame) – Hourly heat demand timeseries in MW for the selected district heating grid










	
create_district_heating_profile_python_like(scenario='eGon2035')

	Creates profiles for all district heating grids in one scenario.
Similar to create_district_heating_profile but faster and needs more RAM.
The results are directly written into the database.


	Parameters

	scenario (str) – Name of the selected scenario.



	Returns

	None.










	
create_individual_heat_per_mv_grid(scenario='eGon2035', mv_grid_id=1564)

	




	
create_individual_heating_peak_loads(scenario='eGon2035')

	




	
create_individual_heating_profile_python_like(scenario='eGon2035')

	




	
create_timeseries_for_building(building_id, scenario)

	Generates final heat demand timeseries for a specific building


	Parameters

	
	building_id (int) – Index of the selected building


	scenario (str) – Name of the selected scenario.






	Returns

	pandas.DataFrame – Hourly heat demand timeseries in MW for the selected building










	
district_heating(method='python')

	




	
export_etrago_cts_heat_profiles()

	Export heat cts load profiles at mv substation level
to etrago-table in the database


	Returns

	None.










	
individual_heating_per_mv_grid(method='python')

	




	
individual_heating_per_mv_grid_100(method='python')

	




	
individual_heating_per_mv_grid_2035(method='python')

	




	
individual_heating_per_mv_grid_tables(method='python')

	




	
store_national_profiles()

	






          

      

      

    

  

    
      
          
            
  
daily


	
class EgonDailyHeatDemandPerClimateZone(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
climate_zone

	




	
daily_demand_share

	




	
day_of_year

	




	
temperature_class

	








	
class EgonMapZensusClimateZones(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
climate_zone

	




	
zensus_population_id

	








	
class IdpProfiles(df_index, **kwargs)

	Bases: object


	
get_temperature_interval(how='geometric_series')

	Appoints the corresponding temperature interval to each temperature
in the temperature vector.










	
daily_demand_shares_per_climate_zone()

	Calculates shares of heat demand per day for each cliamte zone


	Returns

	None.










	
h_value()

	Description: Assignment of daily demand scaling factor to each day of all TRY Climate Zones


	Returns

	h (pandas.DataFrame) – Hourly factor values for each station corresponding to the temperature profile.
Extracted from demandlib.










	
map_climate_zones_to_zensus()

	Geospatial join of zensus cells and climate zones


	Returns

	None.










	
temp_interval()

	Description: Create Dataframe with temperature data for TRY Climate Zones
:returns: temperature_interval (pandas.DataFrame) – Hourly temperature intrerval of all 15 TRY Climate station#s temperature profile






	
temperature_classes()

	




	
temperature_profile_extract()

	Description: Extract temperature data from atlite
:returns: temperature_profile (pandas.DataFrame) – Temperatur profile of all TRY Climate Zones 2011








          

      

      

    

  

    
      
          
            
  
idp_pool


	
class EgonHeatTimeseries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
selected_idp_profiles

	




	
zensus_population_id

	








	
annual_demand_generator()

	Description: Create dataframe with annual demand and household count for each zensus cell
:returns: demand_count (pandas.DataFrame) – Annual demand of all zensus cell with MFH and SFH count and


respective associated Station









	
create()

	Description: Create dataframe with all temprature classes, 24hr. profiles and household stock


	Returns

	idp_df (pandas.DataFrame) – All IDP pool as classified as per household stock and temperature class










	
idp_pool_generator()

	Description: Create List of Dataframes for each temperature class for each household stock



	TYPE list

	List of dataframes with each element representing a dataframe
for every combination of household stock and temperature class













	
select()

	Random assignment of intray-day profiles to each day based on their temeprature class
and household stock count


	Returns

	None.










	
temperature_classes()

	






          

      

      

    

  

    
      
          
            
  
service_sector


	
CTS_demand_scale(aggregation_level)

	Description: caling the demand curves to the annual demand of the respective aggregation level


	Parameters

	aggregation_level (str) – aggregation_level : str
if further processing is to be done in zensus cell level ‘other’
else ‘dsitrict’



	Returns

	
	CTS_per_district (pandas.DataFrame) –


	if aggregation =’district’

	Profiles scaled up to annual demand



	else

	0







	CTS_per_grid (pandas.DataFrame) –


	if aggregation =’district’

	Profiles scaled up to annual demandd



	else

	0







	CTS_per_zensus (pandas.DataFrame) –


	if aggregation =’district’

	0



	else

	Profiles scaled up to annual demand




















	
cts_demand_per_aggregation_level(aggregation_level, scenario)

	Description: Create dataframe assigining the CTS demand curve to individual zensus cell
based on their respective NUTS3 CTS curve


	Parameters

	aggregation_level (str) – if further processing is to be done in zensus cell level ‘other’
else ‘dsitrict’



	Returns

	
	CTS_per_district (pandas.DataFrame) –


	if aggregation =’district’

	NUTS3 CTS profiles assigned to individual
zensu cells and aggregated per district heat area id



	else

	empty dataframe







	CTS_per_grid (pandas.DataFrame) –


	if aggregation =’district’

	NUTS3 CTS profiles assigned to individual
zensu cells and aggregated per mv grid subst id



	else

	empty dataframe







	CTS_per_zensus (pandas.DataFrame) –


	if aggregation =’district’

	empty dataframe



	else

	NUTS3 CTS profiles assigned to individual
zensu population id






















          

      

      

    

  

    
      
          
            
  
heat_etrago



	hts_etrago

	power_to_heat





The central module containing all code dealing with heat sector in etrago


	
class HeatEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Collect data related to the heat sector for the eTraGo tool

This dataset collects data from the heat sector and puts it into a format that
is needed for the transmission grid optimisation within the tool eTraGo.
It includes the creation of inidvidual and central heat nodes, aggregates the
heat supply technologies (apart from CHP) per medium voltage grid district and
adds extendable heat stores to each bus. This data is then writting into the
corresponding tables that are read by eTraGo.


	Dependencies

	
	HeatSupply


	define_mv_grid_districts


	EtragoSetup


	RenewableFeedin


	HeatTimeSeries






	Resulting tables

	
	grid.egon_etrago_bus is extended


	grid.egon_etrago_link is extended


	grid.egon_etrago_link_timeseries is extended


	grid.egon_etrago_store is extended


	grid.egon_etrago_generator is extended









	
name = 'HeatEtrago'

	




	
version = '0.0.10'

	








	
buses()

	Insert individual and district heat buses into eTraGo-tables


	Returns

	None.










	
insert_buses(carrier, scenario)

	Insert heat buses to etrago table

Heat buses are divided into central and individual heating


	Parameters

	
	carrier (str) – Name of the carrier, either ‘central_heat’ or ‘rural_heat’


	scenario (str, optional) – Name of the scenario.













	
insert_central_direct_heat(scenario='eGon2035')

	Insert renewable heating technologies (solar and geo thermal)


	Parameters

	scenario (str, optional) – Name of the scenario The default is ‘eGon2035’.



	Returns

	None.










	
insert_central_gas_boilers(scenario='eGon2035')

	Inserts gas boilers for district heating to eTraGo-table


	Parameters

	scenario (str, optional) – Name of the scenario. The default is ‘eGon2035’.



	Returns

	None.










	
insert_rural_gas_boilers(scenario='eGon2035')

	Inserts gas boilers for individual heating to eTraGo-table


	Parameters

	scenario (str, optional) – Name of the scenario. The default is ‘eGon2035’.



	Returns

	None.










	
insert_store(scenario, carrier)

	




	
store()

	




	
supply()

	Insert individual and district heat supply into eTraGo-tables


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
hts_etrago

The central module creating heat demand time series for the eTraGo tool


	
class HtsEtragoTable(dependencies)

	Bases: egon.data.datasets.Dataset

Collect heat demand time series for the eTraGo tool

This dataset collects data for individual and district heating demands
and writes that into the tables that can be read by the eTraGo tool.


	Dependencies

	
	DistrictHeatingAreas


	HeatEtrago


	define_mv_grid_districts


	HeatPumps2035


	HeatTimeSeries






	Resulting tables

	
	grid.egon_etrago_load is extended


	grid.egon_etrago_load_timeseries is extended









	
name = 'HtsEtragoTable'

	




	
version = '0.0.6'

	








	
hts_to_etrago()

	






          

      

      

    

  

    
      
          
            
  
power_to_heat

The central module containing all code dealing with power to heat


	
assign_electrical_bus(heat_pumps, carrier, multiple_per_mv_grid=False)

	Calculates heat pumps per electrical bus


	Parameters

	
	heat_pumps (pandas.DataFrame) – Heat pumps including voltage level


	multiple_per_mv_grid (boolean, optional) – Choose if a district heating area can by supplied by multiple
hvmv substaions/mv grids. The default is False.






	Returns

	gdf (pandas.DataFrame) – Heat pumps per electrical bus










	
assign_voltage_level(heat_pumps, carrier='heat_pump')

	Assign voltage level to heat pumps


	Parameters

	heat_pumps (pandas.DataFrame) – Heat pumps without voltage level



	Returns

	heat_pumps (pandas.DataFrame) – Heat pumps including voltage level










	
insert_central_power_to_heat(scenario='eGon2035')

	Insert power to heat in district heating areas into database


	Parameters

	scenario (str, optional) – Name of the scenario The default is ‘eGon2035’.



	Returns

	None.










	
insert_individual_power_to_heat(scenario='eGon2035')

	Insert power to heat into database


	Parameters

	scenario (str, optional) – Name of the scenario The default is ‘eGon2035’.



	Returns

	None.










	
insert_power_to_heat_per_level(heat_pumps, multiple_per_mv_grid, carrier='central_heat_pump', scenario='eGon2035')

	Insert power to heat plants per grid level


	Parameters

	
	heat_pumps (pandas.DataFrame) – Heat pumps in selected grid level


	multiple_per_mv_grid (boolean) – Choose if one district heating areas is supplied by one hvmv substation


	scenario (str, optional) – Name of the scenario The default is ‘eGon2035’.






	Returns

	None.












          

      

      

    

  

    
      
          
            
  
heat_supply



	district_heating

	geothermal

	individual_heating





The central module containing all code dealing with heat supply data


	
class EgonDistrictHeatingSupply(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
capacity

	




	
carrier

	




	
category

	




	
district_heating_id

	




	
geometry

	




	
index

	




	
scenario

	








	
class EgonIndividualHeatingSupply(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
capacity

	




	
carrier

	




	
category

	




	
geometry

	




	
index

	




	
mv_grid_id

	




	
scenario

	








	
class HeatSupply(dependencies)

	Bases: egon.data.datasets.Dataset

Select and store heat supply technologies for inidvidual and district heating

This dataset distributes heat supply technologies to each district heating grid
and individual supplies buildings per medium voltage grid district.
National installed capacities are predefined from external sources within
ScenarioCapacities.
The further distribution is done using a cascade that follows a specific order of supply technologies
and the heat demand.


	Dependencies

	
	DataBundle


	DistrictHeatingAreas


	ZensusMvGridDistricts


	Chp






	Resulting tables

	
	demand.egon_district_heating is created and filled


	demand.egon_individual_heating is created and filled









	
name = 'HeatSupply'

	




	
version = '0.0.8'

	








	
create_tables()

	Create tables for district heating areas


	Returns

	None










	
district_heating()

	Insert supply for district heating areas


	Returns

	None.










	
individual_heating()

	Insert supply for individual heating


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
district_heating

The central module containing all code dealing with heat supply
for district heating areas.


	
backup_gas_boilers(scenario)

	Adds backup gas boilers to district heating grids.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	Geopandas.GeoDataFrame – List of gas boilers for district heating










	
backup_resistive_heaters(scenario)

	Adds backup resistive heaters to district heating grids to
meet target values of installed capacities.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	Geopandas.GeoDataFrame – List of gas boilers for district heating










	
capacity_per_district_heating_category(district_heating_areas, scenario)

	Calculates target values per district heating category and technology


	Parameters

	
	district_heating_areas (geopandas.geodataframe.GeoDataFrame) – District heating areas per scenario


	scenario (str) – Name of the scenario






	Returns

	capacity_per_category (pandas.DataFrame) – Installed capacities per technology and size category










	
cascade_heat_supply(scenario, plotting=True)

	Assigns supply strategy for ditsrict heating areas.

Different technologies are selected for three categories of district
heating areas (small, medium and large annual demand).
The technologies are priorized according to
Flexibilisierung der Kraft-Wärme-Kopplung; 2017;
Forschungsstelle für Energiewirtschaft e.V. (FfE)


	Parameters

	
	scenario (str) – Name of scenario


	plotting (bool, optional) – Choose if district heating supply is plotted. The default is True.






	Returns

	resulting_capacities (pandas.DataFrame) – List of plants per district heating grid










	
cascade_per_technology(areas, technologies, capacity_per_category, size_dh, max_geothermal_costs=2)

	Add plants of one technology suppliing district heating


	Parameters

	
	areas (geopandas.geodataframe.GeoDataFrame) – District heating areas which need to be supplied


	technologies (pandas.DataFrame) – List of supply technologies and their parameters


	capacity_per_category (pandas.DataFrame) – Target installed capacities per size-category


	size_dh (str) – Category of the district heating areas


	max_geothermal_costs (float, optional) – Maxiumal costs of MW geothermal in EUR/MW. The default is 2.






	Returns

	
	areas (geopandas.geodataframe.GeoDataFrame) – District heating areas which need additional supply technologies


	technologies (pandas.DataFrame) – List of supply technologies and their parameters


	append_df (pandas.DataFrame) – List of plants per district heating grid for the selected technology















	
plot_heat_supply(resulting_capacities)

	




	
select_district_heating_areas(scenario)

	Selects district heating areas per scenario and assigns size-category


	Parameters

	scenario (str) – Name of the scenario



	Returns

	district_heating_areas (geopandas.geodataframe.GeoDataFrame) – District heating areas per scenario










	
set_technology_data()

	Set data per technology according to Kurzstudie KWK


	Returns

	pandas.DataFrame – List of parameters per technology












          

      

      

    

  

    
      
          
            
  
geothermal

The module containing all code dealing with geothermal potentials and costs

Main source: Ableitung eines Korridors für den Ausbau
der erneuerbaren Wärme im Gebäudebereich, Beuth Hochschule für Technik
Berlin ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH
Februar 2017


	
calc_geothermal_costs(max_costs=inf, min_costs=0)

	




	
calc_geothermal_potentials()

	




	
calc_usable_geothermal_potential(max_costs=2, min_costs=0)

	Calculate geothermal potentials close to district heating demands


	Parameters

	
	max_costs (float, optional) – Maximum accepted costs for geo thermal in EUR/MW_th. The default is 2.


	min_costs (float, optional) – Minimum accepted costs for geo thermal in EUR/MW_th. The default is 0.






	Returns

	float – Geothermal potential close to district heating areas in MW










	
potential_germany()

	Calculates geothermal potentials for different investment costs.

The investment costs for geothermal district heating highly depend on
the location because of different mass flows and drilling depths.
Thsi functions calcultaes the geothermal potentials close to germany
for five different costs ranges.
This data can be used in pypsa-eur-sec to optimise the share of
geothermal district heating by considering different investment costs.


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
individual_heating

The central module containing all code dealing with individual heat supply.

The following main things are done in this module:


	

	Desaggregation of heat pump capacities to individual buildings


	Determination of minimum required heat pump capacity for pypsa-eur-sec




The determination of the minimum required heat pump capacity for pypsa-eur-sec takes
place in the dataset ‘HeatPumpsPypsaEurSec’. The goal is to ensure that the heat pump
capacities determined in pypsa-eur-sec are large enough to serve the heat demand of
individual buildings after the desaggregation from a few nodes in pypsa-eur-sec to the
individual buildings.
To determine minimum required heat pump capacity per building the buildings heat peak
load in the eGon100RE scenario is used (as pypsa-eur-sec serves as the scenario
generator for the eGon100RE scenario; see
determine_minimum_hp_capacity_per_building() for information on how minimum
required heat pump capacity is determined). As the heat peak load is not previously
determined, it is as well done in the course of this task.
Further, as determining heat peak load requires heat load
profiles of the buildings to be set up, this task is also utilised to set up
heat load profiles of all buildings with heat pumps within a grid in the eGon100RE
scenario used in eTraGo.
The resulting data is stored in separate tables respectively a csv file:


	
	input-pypsa-eur-sec/minimum_hp_capacity_mv_grid_100RE.csv:

	This csv file contains minimum required heat pump capacity per MV grid in MW as
input for pypsa-eur-sec. It is created within export_min_cap_to_csv().







	
	demand.egon_etrago_timeseries_individual_heating:

	This table contains aggregated heat load profiles of all buildings with heat pumps
within an MV grid in the eGon100RE scenario used in eTraGo. It is created within
individual_heating_per_mv_grid_tables().







	
	demand.egon_building_heat_peak_loads:

	Mapping of peak heat demand and buildings including cell_id,
building, area and peak load. This table is created in
delete_heat_peak_loads_100RE().









The desaggregation of heat pump capcacities to individual buildings takes place in two
separate datasets: ‘HeatPumps2035’ for eGon2035 scenario and ‘HeatPumps2050’ for
eGon100RE.
It is done separately because for one reason in case of the eGon100RE scenario the
minimum required heat pump capacity per building can directly be determined using the
heat peak load per building determined in the dataset ‘HeatPumpsPypsaEurSec’, whereas
heat peak load data does not yet exist for the eGon2035 scenario. Another reason is,
that in case of the eGon100RE scenario all buildings with individual heating have a
heat pump whereas in the eGon2035 scenario buildings are randomly selected until the
installed heat pump capacity per MV grid is met. All other buildings with individual
heating but no heat pump are assigned a gas boiler.

In the ‘HeatPumps2035’ dataset the following things are done.
First, the building’s heat peak load in the eGon2035 scenario is determined for sizing
the heat pumps. To this end, heat load profiles per building are set up.
Using the heat peak load per building the minimum required heat pump capacity per
building is determined (see determine_minimum_hp_capacity_per_building()).
Afterwards, the total heat pump capacity per MV grid is desaggregated to individual
buildings in the MV grid, wherefore buildings are randomly chosen until the MV grid’s total
heat pump capacity is reached (see determine_buildings_with_hp_in_mv_grid()).
Buildings with PV rooftop plants are more likely to be assigned a heat pump. In case
the minimum heat pump capacity of all chosen buildings is smaller than the total
heat pump capacity of the MV grid but adding another building would exceed the total
heat pump capacity of the MV grid, the remaining capacity is distributed to all
buildings with heat pumps proportionally to the size of their respective minimum
heat pump capacity. Therefore, the heat pump capacity of a building can be larger
than the minimum required heat pump capacity.
The generated heat load profiles per building are in a last step utilised to set up
heat load profiles of all buildings with heat pumps within a grid as well as for all
buildings with a gas boiler (i.e. all buildings with decentral heating system minus
buildings with heat pump) needed in eTraGo.
The resulting data is stored in the following tables:


	
	demand.egon_hp_capacity_buildings:

	This table contains the heat pump capacity of all buildings with a heat pump.
It is created within delete_hp_capacity_2035().







	
	demand.egon_etrago_timeseries_individual_heating:

	This table contains aggregated heat load profiles of all buildings with heat pumps
within an MV grid as well as of all buildings with gas boilers within an MV grid in
the eGon100RE scenario used in eTraGo. It is created within
individual_heating_per_mv_grid_tables().







	
	demand.egon_building_heat_peak_loads:

	Mapping of heat demand time series and buildings including cell_id,
building, area and peak load. This table is created in
delete_heat_peak_loads_2035().









In the ‘HeatPumps2050’ dataset the total heat pump capacity in each MV grid can be
directly desaggregated to individual buildings, as the building’s heat peak load was
already determined in the ‘HeatPumpsPypsaEurSec’ dataset. Also in contrast to the
‘HeatPumps2035’ dataset, all buildings with decentral heating system are assigned a
heat pump, wherefore no random sampling of buildings needs to be conducted.
The resulting data is stored in the following table:


	
	demand.egon_hp_capacity_buildings:

	This table contains the heat pump capacity of all buildings with a heat pump.
It is created within delete_hp_capacity_2035().









The following datasets from the database are mainly used for creation:


	boundaries.egon_map_zensus_grid_districts:


	boundaries.egon_map_zensus_district_heating_areas:


	
	demand.egon_peta_heat:

	Table of annual heat load demand for residential and cts at census cell
level from peta5.







	demand.egon_heat_timeseries_selected_profiles:


	demand.egon_heat_idp_pool:


	demand.egon_daily_heat_demand_per_climate_zone:


	
	boundaries.egon_map_zensus_mvgd_buildings:

	A final mapping table including all buildings used for residential and
cts, heat and electricity timeseries. Including census cells, mvgd bus_id,
building type (osm or synthetic)







	supply.egon_individual_heating:


	
	demand.egon_cts_heat_demand_building_share:

	Table including the mv substation heat profile share of all selected
cts buildings for scenario eGon2035 and eGon100RE. This table is created
within cts_heat()









What is the goal?

The goal is threefold. Primarily, heat pump capacity of individual buildings is
determined as it is necessary for distribution grid analysis. Secondly, as heat
demand profiles need to be set up during the process, the heat demand profiles of all
buildings with individual heat pumps respectively gas boilers per MV grid are set up
to be used in eTraGo. Thirdly, minimum heat pump capacity is determined as input for
pypsa-eur-sec to avoid that heat pump capacity per building is too little to meet
the heat demand after desaggregation to individual buildings.

What is the challenge?

The main challenge lies in the set up of heat demand profiles per building in
aggregate_residential_and_cts_profiles() as it takes alot of time and
in grids with a high number of buildings requires alot of RAM. Both runtime and
RAM usage needed to be improved several times. To speed up the process, tasks are set
up to run in parallel. This currently leads to alot of connections being opened and
at a certain point to a runtime error due to too many open connections.

What are central assumptions during the data processing?

Central assumption for determining minimum heat pump capacity and desaggregating
heat pump capacity to individual buildings is that the required heat pump capacity
is determined using an approach from the
network development plan [https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/Szenariorahmenentwurf_NEP2035_2021_1.pdf]
(pp.46-47) (see determine_minimum_hp_capacity_per_building()). There, the heat
pump capacity is determined by multiplying the heat peak
demand of the building by a minimum assumed COP of 1.7 and a flexibility factor of
24/18, taking into account that power supply of heat pumps can be interrupted for up
to six hours by the local distribution grid operator.
Another central assumption is, that buildings with PV rooftop plants are more likely
to have a heat pump than other buildings (see
determine_buildings_with_hp_in_mv_grid() for details)

Drawbacks and limitations of the data

In the eGon2035 scenario buildings with heat pumps are selected randomly with a higher
probability for a heat pump for buildings with PV rooftop (see
determine_buildings_with_hp_in_mv_grid() for details).
Another limitation may be the sizing of the heat pumps, as in the eGon2035 scenario
their size rigidly depends on the heat peak load and a fixed flexibility factor. During
the coldest days of the year, heat pump flexibility strongly depends on this
assumption and cannot be dynamically enlarged to provide more flexibility (or only
slightly through larger heat storage units).

Notes

This module docstring is rather a dataset documentation. Once, a decision
is made in … the content of this module docstring needs to be moved to
docs attribute of the respective dataset class.


	
class BuildingHeatPeakLoads(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
peak_load_in_w

	




	
scenario

	




	
sector

	








	
class EgonEtragoTimeseriesIndividualHeating(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
carrier

	




	
dist_aggregated_mw

	




	
scenario

	








	
class EgonHpCapacityBuildings(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
hp_capacity

	




	
scenario

	








	
class HeatPumps2035(dependencies)

	Bases: egon.data.datasets.Dataset






	
class HeatPumps2050(dependencies)

	Bases: egon.data.datasets.Dataset






	
class HeatPumpsPypsaEurSec(dependencies)

	Bases: egon.data.datasets.Dataset






	
adapt_numpy_float64(numpy_float64)

	




	
adapt_numpy_int64(numpy_int64)

	




	
aggregate_residential_and_cts_profiles(mvgd, scenario)

	Gets residential and CTS heat demand profiles per building and aggregates
them.


	Parameters

	
	mvgd (int) – MV grid ID.


	scenario (str) – Possible options are eGon2035 or eGon100RE.






	Returns

	pd.DataFrame – Table of demand profile per building. Column names are building IDs and
index is hour of the year as int (0-8759).










	
calc_residential_heat_profiles_per_mvgd(mvgd, scenario)

	Gets residential heat profiles per building in MV grid for either eGon2035
or eGon100RE scenario.


	Parameters

	
	mvgd (int) – MV grid ID.


	scenario (str) – Possible options are eGon2035 or eGon100RE.






	Returns

	pd.DataFrame –


	Heat demand profiles of buildings. Columns are:

	
	
	zensus_population_idint

	Zensus cell ID building is in.







	
	building_idint

	ID of building.







	
	day_of_yearint

	Day of the year (1 - 365).







	
	hourint

	Hour of the day (1 - 24).







	
	demand_tsfloat

	Building’s residential heat demand in MW, for specified hour
of the year (specified through columns day_of_year and
hour).
























	
cascade_heat_supply_indiv(scenario, distribution_level, plotting=True)

	Assigns supply strategy for individual heating in four steps.

1.) all small scale CHP are connected.
2.) If the supply can not  meet the heat demand, solar thermal collectors


are attached. This is not implemented yet, since individual
solar thermal plants are not considered in eGon2035 scenario.




3.) If this is not suitable, the mv grid is also supplied by heat pumps.
4.) The last option are individual gas boilers.


	Parameters

	
	scenario (str) – Name of scenario


	plotting (bool, optional) – Choose if individual heating supply is plotted. The default is True.






	Returns

	resulting_capacities (pandas.DataFrame) – List of plants per mv grid










	
cascade_per_technology(heat_per_mv, technologies, scenario, distribution_level, max_size_individual_chp=0.05)

	Add plants for individual heat.
Currently only on mv grid district level.


	Parameters

	
	mv_grid_districts (geopandas.geodataframe.GeoDataFrame) – MV grid districts including the heat demand


	technologies (pandas.DataFrame) – List of supply technologies and their parameters


	scenario (str) – Name of the scenario


	max_size_individual_chp (float) – Maximum capacity of an individual chp in MW






	Returns

	
	mv_grid_districts (geopandas.geodataframe.GeoDataFrame) – MV grid district which need additional individual heat supply


	technologies (pandas.DataFrame) – List of supply technologies and their parameters


	append_df (pandas.DataFrame) – List of plants per mv grid for the selected technology















	
catch_missing_buidings(buildings_decentral_heating, peak_load)

	Check for missing buildings and reduce the list of buildings with
decentral heating if no peak loads available. This should only happen
in case of cutout SH


	Parameters

	
	buildings_decentral_heating (list(int)) – Array or list of buildings with decentral heating


	peak_load (pd.Series) – Peak loads of all building within the mvgd













	
delete_heat_peak_loads_100RE()

	Remove all heat peak loads for eGon100RE.






	
delete_heat_peak_loads_2035()

	Remove all heat peak loads for eGon2035.






	
delete_hp_capacity(scenario)

	Remove all hp capacities for the selected scenario


	Parameters

	scenario (string) – Either eGon2035 or eGon100RE










	
delete_hp_capacity_100RE()

	Remove all hp capacities for the selected eGon100RE






	
delete_hp_capacity_2035()

	Remove all hp capacities for the selected eGon2035






	
delete_mvgd_ts(scenario)

	Remove all hp capacities for the selected scenario


	Parameters

	scenario (string) – Either eGon2035 or eGon100RE










	
delete_mvgd_ts_100RE()

	Remove all mvgd ts for the selected eGon100RE






	
delete_mvgd_ts_2035()

	Remove all mvgd ts for the selected eGon2035






	
delete_pypsa_eur_sec_csv_file()

	Delete pypsa eur sec minimum heat pump capacity csv before new run






	
desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid)

	Desaggregates the required total heat pump capacity to buildings.

All buildings are previously assigned a minimum required heat pump
capacity. If the total heat pump capacity exceeds this, larger heat pumps
are assigned.


	Parameters

	
	min_hp_cap_per_building (pd.Series) –


	Pandas series with minimum required heat pump capacity per building

	in MW.







	hp_cap_mv_grid (float) – Total heat pump capacity in MW in given MV grid.






	Returns

	pd.Series – Pandas series with heat pump capacity per building in MW.










	
determine_buildings_with_hp_in_mv_grid(hp_cap_mv_grid, min_hp_cap_per_building)

	Distributes given total heat pump capacity to buildings based on their peak
heat demand.


	Parameters

	
	hp_cap_mv_grid (float) – Total heat pump capacity in MW in given MV grid.


	min_hp_cap_per_building (pd.Series) –


	Pandas series with minimum required heat pump capacity per building

	in MW.











	Returns

	pd.Index(int) – Building IDs (as int) of buildings to get heat demand time series for.










	
determine_hp_cap_buildings_eGon100RE()

	Main function to determine HP capacity per building in eGon100RE scenario.






	
determine_hp_cap_buildings_eGon100RE_per_mvgd(mv_grid_id)

	Determines HP capacity per building in eGon100RE scenario.

In eGon100RE scenario all buildings without district heating get a heat
pump.


	Returns

	pd.Series – Pandas series with heat pump capacity per building in MW.










	
determine_hp_cap_buildings_eGon2035_per_mvgd(mv_grid_id, peak_heat_demand, building_ids)

	Determines which buildings in the MV grid will have a HP (buildings with PV
rooftop are more likely to be assigned) in the eGon2035 scenario, as well
as their respective HP capacity in MW.


	Parameters

	
	mv_grid_id (int) – ID of MV grid.


	peak_heat_demand (pd.Series) – Series with peak heat demand per building in MW. Index contains the
building ID.


	building_ids (pd.Index(int)) – Building IDs (as int) of buildings with decentral heating system in
given MV grid.













	
determine_hp_cap_peak_load_mvgd_ts_2035(mvgd_ids)

	Main function to determine HP capacity per building in eGon2035 scenario.
Further, creates heat demand time series for all buildings with heat pumps
in MV grid, as well as for all buildings with gas boilers, used in eTraGo.


	Parameters

	mvgd_ids (list(int)) – List of MV grid IDs to determine data for.










	
determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec(mvgd_ids)

	Main function to determine minimum required HP capacity in MV for
pypsa-eur-sec. Further, creates heat demand time series for all buildings
with heat pumps in MV grid in eGon100RE scenario, used in eTraGo.


	Parameters

	mvgd_ids (list(int)) – List of MV grid IDs to determine data for.










	
determine_min_hp_cap_buildings_pypsa_eur_sec(peak_heat_demand, building_ids)

	Determines minimum required HP capacity in MV grid in MW as input for
pypsa-eur-sec.


	Parameters

	
	peak_heat_demand (pd.Series) – Series with peak heat demand per building in MW. Index contains the
building ID.


	building_ids (pd.Index(int)) – Building IDs (as int) of buildings with decentral heating system in
given MV grid.






	Returns

	float – Minimum required HP capacity in MV grid in MW.










	
determine_minimum_hp_capacity_per_building(peak_heat_demand, flexibility_factor=1.3333333333333333, cop=1.7)

	Determines minimum required heat pump capacity.


	Parameters

	
	peak_heat_demand (pd.Series) – Series with peak heat demand per building in MW. Index contains the
building ID.


	flexibility_factor (float) – Factor to overdimension the heat pump to allow for some flexible
dispatch in times of high heat demand. Per default, a factor of 24/18
is used, to take into account






	Returns

	pd.Series – Pandas series with minimum required heat pump capacity per building in
MW.










	
export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec)

	Export minimum capacity of heat pumps for pypsa eur sec to csv






	
export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False)

	Function to export the collected results of all MVGDs per bulk to DB.


Parameters





	df_peak_loads_dbpd.DataFrame

	Table of building peak loads of all MVGDs per bulk



	df_heat_mvgd_ts_dbpd.DataFrame

	Table of all aggregated MVGD profiles per bulk



	dropboolean

	Drop and recreate table if True










	
get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd, scenario)

	Returns building IDs of buildings with decentral heat demand in
given MV grid.

As cells with district heating differ between scenarios, this is also
depending on the scenario. CTS and residential have to be retrieved
seperatly as some residential buildings only have electricity but no
heat demand. This does not occure in CTS.


	Parameters

	
	mvgd (int) – ID of MV grid.


	scenario (str) – Name of scenario. Can be either “eGon2035” or “eGon100RE”.






	Returns

	pd.Index(int) – Building IDs (as int) of buildings with decentral heating system in
given MV grid. Type is pandas Index to avoid errors later on when it is
used in a query.










	
get_cts_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mv_grid_id)

	Returns building IDs of buildings with decentral CTS heat demand in
given MV grid.

As cells with district heating differ between scenarios, this is also
depending on the scenario.


	Parameters

	
	scenario (str) – Name of scenario. Can be either “eGon2035” or “eGon100RE”.


	mv_grid_id (int) – ID of MV grid.






	Returns

	pd.Index(int) – Building IDs (as int) of buildings with decentral heating system in
given MV grid. Type is pandas Index to avoid errors later on when it is
used in a query.










	
get_daily_demand_share(mvgd)

	per census cell
:Parameters: mvgd (int) – MVGD id


	Returns

	df_daily_demand_share (pd.DataFrame) – Daily annual demand share per cencus cell. Columns of the dataframe
are zensus_population_id, day_of_year and daily_demand_share.










	
get_daily_profiles(profile_ids)

	
	Parameters

	profile_ids (list(int)) – daily heat profile ID’s



	Returns

	df_profiles (pd.DataFrame) – Residential daily heat profiles. Columns of the dataframe are idp,
house, temperature_class and hour.










	
get_heat_peak_demand_per_building(scenario, building_ids)

	




	
get_peta_demand(mvgd, scenario)

	Retrieve annual peta heat demand for residential buildings for either
eGon2035 or eGon100RE scenario.


	Parameters

	
	mvgd (int) – MV grid ID.


	scenario (str) – Possible options are eGon2035 or eGon100RE






	Returns

	df_peta_demand (pd.DataFrame) – Annual residential heat demand per building and scenario. Columns of
the dataframe are zensus_population_id and demand.










	
get_residential_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mv_grid_id)

	Returns building IDs of buildings with decentral residential heat demand in
given MV grid.

As cells with district heating differ between scenarios, this is also
depending on the scenario.


	Parameters

	
	scenario (str) – Name of scenario. Can be either “eGon2035” or “eGon100RE”.


	mv_grid_id (int) – ID of MV grid.






	Returns

	pd.Index(int) – Building IDs (as int) of buildings with decentral heating system in
given MV grid. Type is pandas Index to avoid errors later on when it is
used in a query.










	
get_residential_heat_profile_ids(mvgd)

	Retrieve 365 daily heat profiles ids per residential building and selected
mvgd.


	Parameters

	mvgd (int) – ID of MVGD



	Returns

	df_profiles_ids (pd.DataFrame) – Residential daily heat profile ID’s per building. Columns of the
dataframe are zensus_population_id, building_id,
selected_idp_profiles, buildings and day_of_year.










	
get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id)

	Returns total heat pump capacity per grid that was previously defined
(by NEP or pypsa-eur-sec).


	Parameters

	
	scenario (str) – Name of scenario. Can be either “eGon2035” or “eGon100RE”.


	mv_grid_id (int) – ID of MV grid.






	Returns

	float – Total heat pump capacity in MW in given MV grid.










	
get_zensus_cells_with_decentral_heat_demand_in_mv_grid(scenario, mv_grid_id)

	Returns zensus cell IDs with decentral heating systems in given MV grid.

As cells with district heating differ between scenarios, this is also
depending on the scenario.


	Parameters

	
	scenario (str) – Name of scenario. Can be either “eGon2035” or “eGon100RE”.


	mv_grid_id (int) – ID of MV grid.






	Returns

	pd.Index(int) – Zensus cell IDs (as int) of buildings with decentral heating systems in
given MV grid. Type is pandas Index to avoid errors later on when it is
used in a query.










	
plot_heat_supply(resulting_capacities)

	




	
split_mvgds_into_bulks(n, max_n, func)

	Generic function to split task into multiple parallel tasks,
dividing the number of MVGDs into even bulks.


	Parameters

	
	n (int) – Number of bulk


	max_n (int) – Maximum number of bulks


	func (function) – The funnction which is then called with the list of MVGD as
parameter.
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The central module containing the definitions of the datasets linked to H2

This module contains the definitions of the datasets linked to the
hydrogen sector in eTraGo in Germany.

In the eGon2035 scenario, there is no H2 bus abroad, so technologies
linked to the hydrogen sector are present only in Germany.

In the eGon100RE scenario, the potential and installed capacities abroad
arrise from the PyPSA-eur-sec run. For this reason, this module focuses
only on the hydrogen related components in Germany, and the module
pypsaeursec on the hydrogen
related components abroad.


	
class HydrogenBusEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the H2 buses into the database for Germany

Insert the H2 buses in Germany into the database for the scenarios
eGon2035 and eGon100RE by executing successively the functions
calculate_and_map_saltcavern_storage_potential,
insert_hydrogen_buses and
insert_hydrogen_buses_eGon100RE.


	Dependencies

	
	SaltcavernData


	GasNodesAndPipes


	SubstationVoronoi






	Resulting

	
	grid.egon_etrago_bus is extended









	
name = 'HydrogenBusEtrago'

	




	
version = '0.0.1'

	








	
class HydrogenGridEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the H2 grid in Germany into the database for eGon100RE

Insert the H2 links (pipelines) into Germany in the database for the
scenario eGon100RE by executing the function
insert_h2_pipelines.


	Dependencies

	
	SaltcavernData


	GasNodesAndPipes


	SubstationVoronoi


	GasAreaseGon2035


	PypsaEurSec


	HydrogenBusEtrago






	Resulting

	
	grid.egon_etrago_link is extended









	
name = 'HydrogenGridEtrago'

	




	
version = '0.0.2'

	








	
class HydrogenMethaneLinkEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the methanisation, feed in and SMR into the database

Insert the the methanisation, feed in (only in eGon2035) and Steam
Methane Reaction (SMR) links in Germany into the database for the
scenarios eGon2035 and eGon100RE by executing successively the
functions insert_h2_to_ch4_to_h2
and insert_h2_to_ch4_eGon100RE.


	Dependencies

	
	SaltcavernData


	GasNodesAndPipes


	SubstationVoronoi


	HydrogenBusEtrago


	HydrogenGridEtrago


	HydrogenPowerLinkEtrago






	Resulting

	
	grid.egon_etrago_link is extended









	
name = 'HydrogenMethaneLinkEtrago'

	




	
version = '0.0.5'

	








	
class HydrogenPowerLinkEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the electrolysis and the fuel cells into the database

Insert the the electrolysis and the fuel cell links in Germany into
the database for the scenarios eGon2035 and eGon100RE by executing
successively the functions insert_power_to_h2_to_power
and insert_power_to_h2_to_power_eGon100RE.


	Dependencies

	
	SaltcavernData


	GasNodesAndPipes


	SubstationVoronoi


	HydrogenBusEtrago


	HydrogenGridEtrago






	Resulting

	
	grid.egon_etrago_link is extended









	
name = 'HydrogenPowerLinkEtrago'

	




	
version = '0.0.4'

	








	
class HydrogenStoreEtrago(dependencies)

	Bases: egon.data.datasets.Dataset

Insert the H2 stores into the database for Germany

Insert the H2 stores in Germany into the database for the scenarios
eGon2035 and eGon100RE:



	H2 overground stores or steel tanks at each H2_grid bus with the
function insert_H2_overground_storage
for the scenario eGon2035,


	H2 underground stores or saltcavern stores at each H2_saltcavern
bus with the function insert_H2_saltcavern_storage
for the scenario eGon2035,


	H2 stores (overground and underground) for the scenario eGon100RE
with the function insert_H2_storage_eGon100RE.








	Dependencies

	
	SaltcavernData


	GasNodesAndPipes


	SubstationVoronoi


	HydrogenBusEtrago


	HydrogenGridEtrago


	GasNodesAndPipes






	Resulting

	
	grid.egon_etrago_store is extended









	
name = 'HydrogenStoreEtrago'

	




	
version = '0.0.3'

	










          

      

      

    

  

    
      
          
            
  
bus

The central module containing all code dealing with the hydrogen buses

In this module, the functions allowing to create the H2 buses in Germany
for eTraGo are to be found.
The H2 buses in the neighbouring countries (only present in eGon100RE)
are defined in pypsaeursec.
In both scenarios, there are two types of H2 buses in Germany:



	H2_grid buses: defined in insert_H2_buses_from_CH4_grid();
these buses are located at the places of the CH4 buses.


	H2_saltcavern buses: defined in insert_H2_buses_from_saltcavern();
these buses are located at the intersection of AC buses and
potential H2 saltcaverns.








	
insert_H2_buses_from_CH4_grid(gdf, carrier, target, scn_name)

	Insert the H2 buses based on CH4 grid into the database.

At each CH4 location, respectively at each intersection of the CH4
grid, a H2 bus is created.


	Parameters

	
	gdf (geopandas.GeoDataFrame) – GeoDataFrame containing the empty bus data.


	carrier (str) – Name of the carrier.


	target (dict) – Target schema and table information.


	scn_name (str) – Name of the scenario.






	Returns

	None










	
insert_H2_buses_from_saltcavern(gdf, carrier, sources, target, scn_name)

	Insert the H2 buses based on saltcavern locations into the database.

These buses are located at the intersection of AC buses and
potential H2 saltcaverns.


	Parameters

	
	gdf (geopandas.GeoDataFrame) – GeoDataFrame containing the empty bus data.


	carrier (str) – Name of the carrier.


	sources (dict) – Sources schema and table information.


	target (dict) – Target schema and table information.


	scn_name (str) – Name of the scenario.






	Returns

	None










	
insert_hydrogen_buses(scenario='eGon2035')

	Insert hydrogen buses into the database (in etrago table)


	Hydrogen buses are inserted into the database using the functions:

	
	insert_H2_buses_from_CH4_grid() for H2_grid buses


	insert_H2_buses_from_saltcavern() for the H2_saltcavern
buses









	Parameters

	scenario (str, optional) – Name of the scenario, the default is ‘eGon2035’.



	Returns

	None










	
insert_hydrogen_buses_eGon100RE()

	Copy H2 buses from the eGon2035 to the eGon100RE scenario.


	Returns

	None












          

      

      

    

  

    
      
          
            
  
h2_grid

The central module containing all code dealing with the H2 grid in eGon100RE


	The H2 grid, present only in eGon100RE, is composed of two parts:

	
	a fixed part with the same topology as the CH4 grid and with
carrier ‘H2_retrofit’ corresponding to the retrofitted share of
the CH4 grid into a hydrogen grid,


	an extendable part with carrier ‘H2_gridextension’, linking each
H2_salcavern bus to the closest H2_grid bus: this part has no
capacity (p_nom = 0) but it can be extended.








As for the CH4 grid, the H2 pipelines are modelled by PyPSA links.


	
insert_h2_pipelines()

	Insert hydrogen grid (H2 links) into the database for eGon100RE.


	Insert the H2 grid by executing the following steps:

	
	Copy the CH4 links in Germany from eGon2035


	
	Overwrite the followings columns:

	
	bus0 and bus1 using the grid.egon_etrago_ch4_h2 table


	carrier, scn_name


	p_nom: the value attributed there corresponds to the share
of p_nom of the specific pipeline that could be retrofited into
H2 pipeline. This share is the same for every pipeline and is
calculated in the PyPSA-eur-sec run.










	Create new extendable pipelines to link the existing grid to the
H2_saltcavern buses


	Clean database


	Attribute link_id to the links


	Insert into the database









	Returns

	None












          

      

      

    

  

    
      
          
            
  
h2_to_ch4

Module containing the definition of the links between H2 and CH4 buses

In this module the functions used to define and insert the links between
H2 and CH4 buses into the database are to be found.
These links are modelling:



	Methanisation (carrier name: ‘H2_to_CH4’): technology to produce CH4
from H2


	H2_feedin: Injection of H2 into the CH4 grid


	Steam Methane Reaction (SMR, carrier name: ‘CH4_to_H2’): techonology
to produce CH4 from H2








	
H2_CH4_mix_energy_fractions(x, T=25, p=50)

	Calculate the fraction of H2 with respect to energy in a H2 CH4 mixture.

Given the volumetric fraction of H2 in a H2 and CH4 mixture, the fraction
of H2 with respect to energy is calculated with the ideal gas mixture law.
Beware, that changing the fraction of H2 changes the overall energy within
a specific volume of the mixture. If H2 is fed into CH4, the pipeline
capacity (based on energy) therefore decreases if the volumetric flow
does not change. This effect is neglected in eGon. At 15 vol% H2 the
decrease in capacity equals about 10 % if volumetric flow does not change.


	Parameters

	
	x (float) – Volumetric fraction of H2 in the mixture


	T (int, optional) – Temperature of the mixture in °C, by default 25


	p (int, optional) – Pressure of the mixture in bar, by default 50






	Returns

	float – Fraction of H2 in mixture with respect to energy (LHV)










	
insert_h2_to_ch4_eGon100RE()

	Copy H2/CH4 links from the eGon2035 to the eGon100RE scenario.






	
insert_h2_to_ch4_to_h2()

	Inserts methanisation, feedin and SMR links into the database

Define the potentials for methanisation and Steam Methane Reaction
(SMR) modelled as extendable links as well as the H2 feedin
capacities modelled as non extendable links and insert all of them
into the database.
These tree technologies are connecting CH4 and H2_grid buses only.

The capacity of the H2_feedin links is considerated as constant and
calculated as the sum of the capacities of the CH4 links connected
to the CH4 bus multiplied by the H2 energy share allowed to be fed in.
This share is calculated in the function H2_CH4_mix_energy_fractions().


	Returns

	None












          

      

      

    

  

    
      
          
            
  
power_to_h2

Module containing the definition of the AC grid to H2 links

In this module the functions used to define and insert the links
between H2 and AC buses into the database are to be found.
These links are modelling:



	Electrolysis (carrier name: ‘power_to_H2’): technology to produce H2
from AC


	Fuel cells (carrier name: ‘H2_to_power’): techonology to produce
power from H2








	
insert_power_to_h2_to_power(scn_name='eGon2035')

	Insert electrolysis and fuel cells capacities into the database.

The potentials for power-to-H2 in electrolysis and H2-to-power in
fuel cells are created between each H2 bus (H2_grid and
H2_saltcavern) and its closest HV power bus.
These links are extendable. For the electrolysis, if the distance
between the AC and the H2 bus is > 500m, the maximum capacity of
the installation is limited to 1 MW.


	Parameters

	scn_name (str) – Name of the scenario



	Returns

	None










	
insert_power_to_h2_to_power_eGon100RE()

	Copy H2/power links from the eGon2035 to the eGon100RE scenario.


	Returns

	None










	
map_buses(scn_name)

	Map H2 buses to nearest HV AC bus.


	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	gdf (geopandas.GeoDataFrame) – GeoDataFrame with connected buses.












          

      

      

    

  

    
      
          
            
  
storage

The central module containing all code dealing with H2 stores in Germany

This module contains the functions used to insert the two types of H2
store potentials in Germany:



	H2 overground stores (carrier: ‘H2_overground’): steel tanks at
every H2_grid bus


	H2 underground stores (carrier: ‘H2_underground’): saltcavern store
at every H2_saltcavern bus.
NB: the saltcavern locations define the H2_saltcavern buses locations.







All these stores are modelled as extendable PyPSA stores.


	
calculate_and_map_saltcavern_storage_potential()

	Calculate site specific storage potential based on InSpEE-DS report.


	Returns

	None










	
insert_H2_overground_storage(scn_name='eGon2035')

	Insert H2_overground stores into the database.

Insert extendable H2_overground stores (steel tanks) at each H2_grid
bus.


	Returns

	None










	
insert_H2_saltcavern_storage(scn_name='eGon2035')

	Insert H2_underground stores into the database.

Insert extendable H2_underground stores (saltcavern potentials) at
every H2_saltcavern bus.


	Returns

	None










	
insert_H2_storage_eGon100RE()

	Copy H2 storage from the eGon2035 to the eGon100RE scenario.


	Returns

	None










	
write_saltcavern_potential()

	Write saltcavern potentials into the database


	Returns

	None












          

      

      

    

  

    
      
          
            
  
industrial_sites

The central module containing all code dealing with the spatial
distribution of industrial electricity demands.
Industrial demands from DemandRegio are distributed from nuts3 level down
to osm landuse polygons and/or industrial sites also identified within this
processing step bringing three different inputs together.


	
class HotmapsIndustrialSites(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
address

	




	
city

	




	
citycode

	




	
companyname

	




	
country

	




	
datasource

	




	
emissions_eprtr_2014

	




	
emissions_ets_2014

	




	
excess_heat_100_200C

	




	
excess_heat_200_500C

	




	
excess_heat_500C

	




	
excess_heat_total

	




	
fuel_demand

	




	
geom

	




	
location

	




	
production

	




	
siteid

	




	
sitename

	




	
subsector

	




	
wz

	








	
class IndustrialSites(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
address

	




	
companyname

	




	
geom

	




	
id

	




	
nuts3

	




	
subsector

	




	
wz

	








	
class MergeIndustrialSites(dependencies)

	Bases: egon.data.datasets.Dataset






	
class SchmidtIndustrialSites(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
annual_tonnes

	




	
application

	




	
capacity_production

	




	
geom

	




	
id

	




	
landkreis_number

	




	
lat

	




	
lon

	




	
plant

	




	
wz

	








	
class SeenergiesIndustrialSites(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
address

	




	
companyname

	




	
country

	




	
electricitydemand_tj

	




	
eu28

	




	
excess_heat

	




	
fueldemand_tj

	




	
geom

	




	
globalid

	




	
lat

	




	
level_1_pj

	




	
level_1_r_pj

	




	
level_1_r_tj

	




	
level_1_tj

	




	
level_2_pj

	




	
level_2_r_pj

	




	
level_2_r_tj

	




	
level_2_tj

	




	
level_3_pj

	




	
level_3_r_pj

	




	
level_3_r_tj

	




	
level_3_tj

	




	
lon

	




	
nuts1

	




	
nuts3

	




	
objectid

	




	
siteid

	




	
subsector

	




	
wz

	








	
create_tables()

	Create tables for industrial sites and distributed industrial demands
:returns: None.






	
download_hotmaps()

	Download csv file on hotmap’s industrial sites.






	
download_import_industrial_sites()

	Wraps different functions to create tables, download csv files containing
information on industrial sites in Germany and write this data to the
local postgresql database


	Returns

	None.










	
download_seenergies()

	Download csv file on s-eenergies’ industrial sites.






	
hotmaps_to_postgres()

	Import hotmaps data to postgres database






	
map_nuts3()

	Match resulting industrial sites with nuts3 codes and fill column ‘nuts3’


	Returns

	None.










	
merge_inputs()

	Merge and clean data from different sources
(hotmaps, seenergies, Thesis Schmidt)






	
schmidt_to_postgres()

	Import data from Thesis by Danielle Schmidt to postgres database






	
seenergies_to_postgres()

	Import seenergies data to postgres database








          

      

      

    

  

    
      
          
            
  
industry



	temporal





The central module containing all code dealing with the spatial
distribution of industrial electricity demands.
Industrial demands from DemandRegio are distributed from nuts3 level down
to osm landuse polygons and/or industrial sites also identified within this
processing step bringing three different inputs together.


	
class DemandCurvesOsmIndustry(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus

	




	
p_set

	




	
scn_name

	








	
class DemandCurvesOsmIndustryIndividual(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
demand

	




	
osm_id

	




	
p_set

	




	
peak_load

	




	
scn_name

	




	
voltage_level

	








	
class DemandCurvesSitesIndustry(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus

	




	
p_set

	




	
scn_name

	




	
wz

	








	
class DemandCurvesSitesIndustryIndividual(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
demand

	




	
p_set

	




	
peak_load

	




	
scn_name

	




	
site_id

	




	
voltage_level

	




	
wz

	








	
class EgonDemandRegioOsmIndElectricity(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
demand

	




	
id

	




	
osm_id

	




	
scenario

	




	
wz

	








	
class EgonDemandRegioSitesIndElectricity(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
demand

	




	
industrial_sites_id

	




	
scenario

	




	
wz

	








	
class IndustrialDemandCurves(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables()

	Create tables for industrial sites and distributed industrial demands
:returns: None.






	
industrial_demand_distr()

	Distribute electrical demands for industry to osm landuse polygons
and/or industrial sites, identified earlier in the process.
The demands per subsector on nuts3-level from demandregio are distributed
linearly to the area of the corresponding landuse polygons or evenly to
identified industrial sites.


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
temporal

The central module containing all code dealing with processing
timeseries data using demandregio


	
calc_load_curves_ind_osm(scenario)

	Temporal disaggregate electrical demand per osm industrial landuse
area.


	Parameters

	scenario (str) – Scenario name.



	Returns

	pandas.DataFrame – Demand timeseries of industry allocated to osm landuse areas and
aggregated per substation id










	
calc_load_curves_ind_sites(scenario)

	Temporal disaggregation of load curves per industrial site and
industrial subsector.


	Parameters

	scenario (str) – Scenario name.



	Returns

	pandas.DataFrame – Demand timeseries of industry allocated to industrial sites and
aggregated per substation id and industrial subsector










	
identify_bus(load_curves, demand_area)

	Identify the grid connection point for a consumer by determining its
grid level based on the time series’ peak load and the spatial
intersection to mv grid districts or ehv voronoi cells.


	Parameters

	
	load_curves (pandas.DataFrame) – Demand timeseries per demand area (e.g. osm landuse area, industrial
site)


	demand_area (pandas.DataFrame) – Dataframe with id and geometry of areas where an industrial demand
is assigned to, such as osm landuse areas or industrial sites.






	Returns

	pandas.DataFrame – Aggregated industrial demand timeseries per bus










	
identify_voltage_level(df)

	Identify the voltage_level of a grid component based on its peak load
and defined thresholds.


	Parameters

	df (pandas.DataFrame) – Data frame containing information about peak loads



	Returns

	pandas.DataFrame – Data frame with an additional column with voltage level










	
insert_osm_ind_load()

	Inserts electrical industry loads assigned to osm landuse areas to the
database.


	Returns

	None.










	
insert_sites_ind_load()

	Inserts electrical industry loads assigned to osm landuse areas to the
database.


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
loadarea

OSM landuse extraction and load areas creation.

Landuse


	Landuse data is extracted from OpenStreetMap: residential, retail,
industrial, Agricultural


	Data is cut with German borders (VG 250), data outside is dropped


	Invalid geometries are fixed


	Results are stored in table openstreetmap.osm_landuse




Load Areas

TBD

Note: industrial demand contains:
* voltage levels 4-7
* only demand from ind. sites+osm located in LA!


	
class LoadArea(dependencies)

	Bases: egon.data.datasets.Dataset






	
class OsmLanduse(dependencies)

	Bases: egon.data.datasets.Dataset






	
class OsmPolygonUrban(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area_ha

	




	
geom

	




	
id

	




	
name

	




	
osm_id

	




	
sector

	




	
sector_name

	




	
tags

	




	
vg250

	








	
census_cells_melt()

	Melt all census cells: buffer, union, unbuffer






	
create_landuse_table()

	Create tables for landuse data
:returns: None.






	
drop_temp_tables()

	




	
execute_sql_script(script)

	Execute SQL script


	Parameters

	script (str) – Filename of script










	
loadareas_add_demand_cts()

	Adds consumption and peak load to load areas for CTS






	
loadareas_add_demand_hh()

	Adds consumption and peak load to load areas for households






	
loadareas_add_demand_ind()

	Adds consumption and peak load to load areas for industry






	
loadareas_create()

	Create load areas from merged OSM landuse and census cells:


	Cut Loadarea with MV Griddistrict


	Identify and exclude Loadarea smaller than 100m².


	Generate Centre of Loadareas with Centroid and PointOnSurface.


	Calculate population from Census 2011.


	Cut all 4 OSM sectors with MV Griddistricts.


	Calculate statistics like NUTS and AGS code.


	Check for Loadareas without AGS code.









	
osm_landuse_census_cells_melt()

	Melt OSM landuse areas and census cells






	
osm_landuse_melt()

	Melt all OSM landuse areas by: buffer, union, unbuffer








          

      

      

    

  

    
      
          
            
  
low_flex_scenario

The central module to create low flex scenarios


	
class LowFlexScenario(dependencies)

	Bases: egon.data.datasets.Dataset








          

      

      

    

  

    
      
          
            
  
osm

The central module containing all code dealing with importing OSM data.

This module either directly contains the code dealing with importing OSM
data, or it re-exports everything needed to handle it. Please refrain
from importing code from any modules below this one, because it might
lead to unwanted behaviour.

If you have to import code from a module below this one because the code
isn’t exported from this module, please file a bug, so we can fix this.


	
class OpenStreetMap(dependencies)

	Bases: egon.data.datasets.Dataset






	
add_metadata()

	Writes metadata JSON string into table comment.






	
download()

	Download OpenStreetMap .pbf file.






	
modify_tables()

	Adjust primary keys, indices and schema of OSM tables.


	The Column “id” is added and used as the new primary key.


	Indices (GIST, GIN) are reset


	The tables are moved to the schema configured as the “output_schema”.









	
to_postgres(cache_size=4096)

	Import OSM data from a Geofabrik .pbf file into a PostgreSQL database.


	Parameters

	cache_size (int, optional) – Memory used during data import












          

      

      

    

  

    
      
          
            
  
osm_buildings_streets

Filtered and preprocessed buildings, streets and amenities from OpenStreetMap
(OSM)

This dataset on buildings and amenities is required by several tasks in the
pipeline, such as the distribution of household demand profiles or PV home
systems to buildings. This data is enriched by population and apartments from
Zensus 2011. Those derived datasets and the data on streets will be used in the
DIstribution Network Generat0r :ref:`ding0
<https://github.com/openego/ding0>`_ e.g. to cluster loads and create low
voltage grids.

Details and Steps


	Extract buildings and filter using relevant tags, e.g. residential and
commercial, see script osm_buildings_filter.sql for the full list of tags.
Resulting tables:
* All buildings: openstreetmap.osm_buildings
* Filtered buildings: openstreetmap.osm_buildings_filtered
* Residential buildings: openstreetmap.osm_buildings_residential


	Extract amenities and filter using relevant tags, e.g. shops and restaurants,
see script osm_amenities_shops_preprocessing.sql for the full list of tags.
Resulting table: openstreetmap.osm_amenities_shops_filtered


	Create a mapping table for building’s osm IDs to the Zensus cells the
building’s centroid is located in.
Resulting tables:
* boundaries.egon_map_zensus_buildings_filtered (filtered)
* boundaries.egon_map_zensus_buildings_residential (residential only)


	Enrich each building by number of apartments from Zensus table
society.egon_destatis_zensus_apartment_building_population_per_ha
by splitting up the cell’s sum equally to the buildings. In some cases, a
Zensus cell does not contain buildings but there’s a building nearby which
the no. of apartments is to be allocated to. To make sure apartments are
allocated to at least one building, a radius of 77m is used to catch building
geometries.


	Split filtered buildings into 3 datasets using the amenities’ locations:
temporary tables are created in script osm_buildings_temp_tables.sql the
final tables in osm_buildings_amentities_results.sql.
Resulting tables:
* Buildings w/ amenities: openstreetmap.osm_buildings_with_amenities
* Buildings w/o amenities: openstreetmap.osm_buildings_without_amenities
* Amenities not allocated to buildings:


openstreetmap.osm_amenities_not_in_buildings






	Extract streets (OSM ways) and filter using relevant tags, e.g.
highway=secondary, see script osm_ways_preprocessing.sql for the full list
of tags. Additionally, each way is split into its line segments and their
lengths is retained.
Resulting tables:
* Filtered streets: openstreetmap.osm_ways_preprocessed
* Filtered streets w/ segments: openstreetmap.osm_ways_with_segments




Notes

This module docstring is rather a dataset documentation. Once, a decision
is made in … the content of this module docstring needs to be moved to
docs attribute of the respective dataset class.


	
class OsmBuildingsStreets(dependencies)

	Bases: egon.data.datasets.Dataset






	
add_metadata()

	




	
create_buildings_filtered_all_zensus_mapping()

	




	
create_buildings_filtered_zensus_mapping()

	




	
create_buildings_residential_zensus_mapping()

	




	
create_buildings_temp_tables()

	




	
drop_temp_tables()

	




	
execute_sql_script(script)

	Execute SQL script


	Parameters

	script (str) – Filename of script










	
extract_amenities()

	




	
extract_buildings_filtered_amenities()

	




	
extract_buildings_w_amenities()

	




	
extract_buildings_wo_amenities()

	




	
extract_ways()

	




	
filter_buildings()

	




	
filter_buildings_residential()

	




	
preprocessing()

	






          

      

      

    

  

    
      
          
            
  
osmtgmod



	substation






	
class Osmtgmod(dependencies)

	Bases: egon.data.datasets.Dataset






	
import_osm_data()

	




	
osmtgmod(config_database='egon-data', config_basepath='osmTGmod/egon-data', config_continue_run=False, filtered_osm_pbf_path_to_file=None, docker_db_config=None)

	




	
run()

	




	
to_pypsa()

	






          

      

      

    

  

    
      
          
            
  
substation

The central module containing code to create substation tables


	
class EgonEhvSubstation(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
dbahn

	




	
frequency

	




	
lat

	




	
lon

	




	
operator

	




	
osm_id

	




	
osm_www

	




	
point

	




	
polygon

	




	
power_type

	




	
ref

	




	
status

	




	
subst_name

	




	
substation

	




	
voltage

	








	
class EgonHvmvSubstation(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
dbahn

	




	
frequency

	




	
lat

	




	
lon

	




	
operator

	




	
osm_id

	




	
osm_www

	




	
point

	




	
polygon

	




	
power_type

	




	
ref

	




	
status

	




	
subst_name

	




	
substation

	




	
voltage

	








	
create_tables()

	Create tables for substation data
:returns: None.






	
extract()

	Extract ehv and hvmv substation from transfer buses and results from osmtgmod


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
power_etrago



	match_ocgt





The central module containing all code dealing with ocgt in etrago


	
class OpenCycleGasTurbineEtrago(dependencies)

	Bases: egon.data.datasets.Dataset








          

      

      

    

  

    
      
          
            
  
match_ocgt

Module containing the definition of the open cycle gas turbine links


	
insert_open_cycle_gas_turbines(scn_name='eGon2035')

	Insert gas turbine links in egon_etrago_link table.


	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	None










	
map_buses(scn_name)

	Map OCGT AC buses to nearest CH4 bus.


	Parameters

	scn_name (str) – Name of the scenario.



	Returns

	gdf (geopandas.GeoDataFrame) – GeoDataFrame with connected buses.












          

      

      

    

  

    
      
          
            
  
power_plants



	assign_weather_data

	conventional

	mastr

	pv_ground_mounted

	pv_rooftop

	pv_rooftop_buildings

	wind_farms

	wind_offshore





The central module containing all code dealing with power plant data.


	
class EgonPowerPlants(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
carrier

	




	
el_capacity

	




	
geom

	




	
id

	




	
scenario

	




	
source_id

	




	
sources

	




	
voltage_level

	




	
weather_cell_id

	








	
class PowerPlants(dependencies)

	Bases: egon.data.datasets.Dataset

This module creates all electrical generators for different scenarios. It
also calculates the weather area for each weather dependent generator.


	Dependencies

	
	Chp


	:py:class:`CtsElectricityDemand




<egon.data.datasets.electricity_demand.CtsElectricityDemand>`
* HouseholdElectricityDemand
* mastr_data
* define_mv_grid_districts
* RePotentialAreas
* ZensusVg250
* ScenarioCapacities
* ScenarioParameters
* Setup
* substation_extraction
* Vg250MvGridDistricts
* ZensusMvGridDistricts



	Resulting tables

	
	:py:class:`supply.egon_power_plants




<egon.data.datasets.power_plants.EgonPowerPlants>` is filled






	
name = 'PowerPlants'

	




	
version = '0.0.18'

	








	
allocate_conventional_non_chp_power_plants()

	




	
allocate_other_power_plants()

	




	
assign_bus_id(power_plants, cfg)

	Assigns bus_ids to power plants according to location and voltage level


	Parameters

	power_plants (pandas.DataFrame) – Power plants including voltage level



	Returns

	power_plants (pandas.DataFrame) – Power plants including voltage level and bus_id










	
assign_voltage_level(mastr_loc, cfg, mastr_working_dir)

	Assigns voltage level to power plants.

If location data inluding voltage level is available from
Marktstammdatenregister, this is used. Otherwise the voltage level is
assigned according to the electrical capacity.


	Parameters

	mastr_loc (pandas.DataFrame) – Power plants listed in MaStR with geometry inside German boundaries



	Returns

	pandas.DataFrame – Power plants including voltage_level










	
assign_voltage_level_by_capacity(mastr_loc)

	




	
create_tables()

	Create tables for power plant data
:returns: None.






	
filter_mastr_geometry(mastr, federal_state=None)

	Filter data from MaStR by geometry


	Parameters

	
	mastr (pandas.DataFrame) – All power plants listed in MaStR


	federal_state (str or None) – Name of federal state whoes power plants are returned.
If None, data for Germany is returned






	Returns

	mastr_loc (pandas.DataFrame) – Power plants listed in MaStR with geometry inside German boundaries










	
insert_biomass_plants(scenario)

	Insert biomass power plants of future scenario


	Parameters

	scenario (str) – Name of scenario.



	Returns

	None.










	
insert_hydro_biomass()

	Insert hydro and biomass power plants in database


	Returns

	None.










	
insert_hydro_plants(scenario)

	Insert hydro power plants of future scenario.

Hydro power plants are diveded into run_of_river and reservoir plants
according to Marktstammdatenregister.
Additional hydro technologies (e.g. turbines inside drinking water
systems) are not considered.


	Parameters

	scenario (str) – Name of scenario.



	Returns

	None.










	
scale_prox2now(df, target, level='federal_state')

	Scale installed capacities linear to status quo power plants


	Parameters

	
	df (pandas.DataFrame) – Status Quo power plants


	target (pandas.Series) – Target values for future scenario


	level (str, optional) – Scale per ‘federal_state’ or ‘country’. The default is ‘federal_state’.






	Returns

	df (pandas.DataFrame) – Future power plants










	
select_target(carrier, scenario)

	Select installed capacity per scenario and carrier


	Parameters

	
	carrier (str) – Name of energy carrier


	scenario (str) – Name of scenario






	Returns

	pandas.Series – Target values for carrier and scenario












          

      

      

    

  

    
      
          
            
  
assign_weather_data


	
find_bus_id(power_plants, cfg)

	




	
find_weather_id()

	Assign weather data to the weather dependant generators (wind and solar)


	Parameters

	*No parameters required










	
weatherId_and_busId()

	




	
write_power_plants_table(power_plants, cfg, con)

	






          

      

      

    

  

    
      
          
            
  
conventional

The module containing all code allocating power plants of different
conventional technologies (oil, gas, others) based on data from MaStR and NEP.


	
match_nep_no_chp(nep, mastr, matched, buffer_capacity=0.1, consider_location='plz', consider_carrier=True, consider_capacity=True)

	Match Power plants (no CHP) from MaStR to list of power plants from NEP


	Parameters

	
	nep (pandas.DataFrame) – Power plants (no CHP) from NEP which are not matched to MaStR


	mastr (pandas.DataFrame) – Power plants (no CHP) from MaStR which are not matched to NEP


	matched (pandas.DataFrame) – Already matched power plants


	buffer_capacity (float, optional) – Maximum difference in capacity in p.u. The default is 0.1.






	Returns

	
	matched (pandas.DataFrame) – Matched CHP


	mastr (pandas.DataFrame) – CHP plants from MaStR which are not matched to NEP


	nep (pandas.DataFrame) – CHP plants from NEP which are not matched to MaStR















	
select_nep_power_plants(carrier)

	Select power plants with location from NEP’s list of power plants


	Parameters

	carrier (str) – Name of energy carrier



	Returns

	pandas.DataFrame – Waste power plants from NEP list










	
select_no_chp_combustion_mastr(carrier)

	Select power plants of a certain carrier from MaStR data which excludes
all power plants used for allocation of CHP plants.


	Parameters

	carrier (str) – Name of energy carrier



	Returns

	pandas.DataFrame – Power plants from NEP list












          

      

      

    

  

    
      
          
            
  
mastr

Import MaStR dataset and write to DB tables

Data dump from Marktstammdatenregister (2022-11-17) is imported into the
database. Only some technologies are taken into account and written to the
following tables:


	PV: table supply.egon_power_plants_pv


	wind turbines: table supply.egon_power_plants_wind


	biomass/biogas plants: table supply.egon_power_plants_biomass


	hydro plants: table supply.egon_power_plants_hydro




Handling of empty source data in MaStr dump:
* voltage_level: inferred based on nominal power (capacity) using the


ranges from
https://redmine.iks.cs.ovgu.de/oe/projects/ego-n/wiki/Definition_of_thresholds_for_voltage_level_assignment
which results in True in column voltage_level_inferred. Remaining datasets
are set to -1 (which only occurs if capacity is empty).





	supply.egon_power_plants_*.bus_id: set to -1 (only if not within grid
districts or no geom available, e.g. for units with nom. power <30 kW)


	supply.egon_power_plants_hydro.plant_type: NaN




The data is used especially for the generation of status quo grids by ding0.


	
import_mastr() → None

	Import MaStR data into database






	
infer_voltage_level(units_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Infer nan values in voltage level derived from generator capacity to
the power plants.


	Parameters

	
	units_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing units with voltage levels from MaStR


	Returnsunits_gdf (gpd.GeoDataFrame)


	——-


	geopandas.GeoDataFrame – GeoDataFrame containing units all having assigned a voltage level.













	
isfloat(num: str)

	Determine if string can be converted to float.
:Parameters: num (str) – String to parse.


	Returns

	bool – Returns True in string can be parsed to float.










	
zip_and_municipality_from_standort(standort: str) → tuple[str, bool]

	Get zip code and municipality from Standort string split into a list.
:Parameters: standort (str) – Standort as given from MaStR data.


	Returns

	str – Standort with only the zip code and municipality
as well a ‘, Germany’ added.












          

      

      

    

  

    
      
          
            
  
pv_ground_mounted


	
insert()

	






          

      

      

    

  

    
      
          
            
  
pv_rooftop

The module containing all code dealing with pv rooftop distribution.


	
pv_rooftop_per_mv_grid()

	Execute pv rooftop distribution method per scenario


	Returns

	None.










	
pv_rooftop_per_mv_grid_and_scenario(scenario, level)

	Intergate solar rooftop per mv grid district

The target capacity is distributed to the mv grid districts linear to
the residential and service electricity demands.


	Parameters

	
	scenario (str, optional) – Name of the scenario


	level (str, optional) – Choose level of target values.






	Returns

	None.












          

      

      

    

  

    
      
          
            
  
pv_rooftop_buildings

Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate
new PV rooftop generators for scenarios eGon2035 and eGon100RE.

Data cleaning and inference:
* Drop duplicates and entries with missing critical data.
* Determine most plausible capacity from multiple values given in MaStR data.
* Drop generators which don’t have any plausible capacity data


(23.5MW > P > 0.1).





	Randomly and weighted add a start-up date if it is missing.


	Extract zip and municipality from ‘site’ given in MaStR data.


	Geocode unique zip and municipality combinations with Nominatim (1 sec
delay). Drop generators for which geocoding failed or which are located
outside the municipalities of Germany.


	Add some visual sanity checks for cleaned data.




Allocation of MaStR data:
* Allocate each generator to an existing building from OSM.
* Determine the quantile each generator and building is in depending on the


capacity of the generator and the area of the polygon of the building.





	Randomly distribute generators within each municipality preferably within
the same building area quantile as the generators are capacity wise.


	If not enough buildings exists within a municipality and quantile additional
buildings from other quantiles are chosen randomly.




Desegregation of pv rooftop scenarios:
* The scenario data per federal state is linearly distributed to the mv grid


districts according to the pv rooftop potential per mv grid district.





	The rooftop potential is estimated from the building area given from the OSM
buildings.


	Grid districts, which are located in several federal states, are allocated
PV capacity according to their respective roof potential in the individual
federal states.


	The desegregation of PV plants within a grid districts respects existing
plants from MaStR, which did not reach their end of life.


	New PV plants are randomly and weighted generated using a breakdown of MaStR
data as generator basis.


	Plant metadata (e.g. plant orientation) is also added random and weighted
from MaStR data as basis.





	
class EgonPowerPlantPvRoofBuilding(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
bus_id

	




	
capacity

	




	
gens_id

	




	
index

	




	
orientation_primary

	




	
orientation_primary_angle

	




	
orientation_uniform

	




	
scenario

	




	
voltage_level

	




	
weather_cell_id

	








	
class OsmBuildingsFiltered(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
amenity

	




	
area

	




	
building

	




	
geom

	




	
geom_point

	




	
id

	




	
name

	




	
osm_id

	




	
tags

	








	
class Vg250Lan(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
ade

	




	
ags

	




	
ags_0

	




	
ars

	




	
ars_0

	




	
bem

	




	
bez

	




	
bsg

	




	
debkg_id

	




	
fk_s3

	




	
gen

	




	
geometry

	




	
gf

	




	
ibz

	




	
id

	




	
nbd

	




	
nuts

	




	
rs

	




	
rs_0

	




	
sdv_ars

	




	
sdv_rs

	




	
sn_g

	




	
sn_k

	




	
sn_l

	




	
sn_r

	




	
sn_v1

	




	
sn_v2

	




	
wsk

	








	
add_ags_to_buildings(buildings_gdf: geopandas.geodataframe.GeoDataFrame, municipalities_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Add information about AGS ID to buildings.
:Parameters: * buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.



	municipalities_gdf (geopandas.GeoDataFrame) – GeoDataFrame with municipality data.








	Returns

	gepandas.GeoDataFrame – GeoDataFrame containing OSM buildings data
with AGS ID added.










	
add_ags_to_gens(mastr_gdf: geopandas.geodataframe.GeoDataFrame, municipalities_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Add information about AGS ID to generators.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame with valid and cleaned MaStR data.



	municipalities_gdf (geopandas.GeoDataFrame) – GeoDataFrame with municipality data.








	Returns

	gepandas.GeoDataFrame – GeoDataFrame with valid and cleaned MaStR data
with AGS ID added.










	
add_buildings_meta_data(buildings_gdf: geopandas.geodataframe.GeoDataFrame, prob_dict: dict, seed: int) → geopandas.geodataframe.GeoDataFrame

	Randomly add additional metadata to desaggregated PV plants.
:Parameters: * buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data with desaggregated PV



plants.





	prob_dict (dict) – Dictionary with values and probabilities per capacity range.


	seed (int) – Seed to use for random operations with NumPy and pandas.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM building data with desaggregated PV
plants.










	
add_bus_ids_sq(buildings_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Add bus ids for status_quo units


	Parameters

	buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data with desaggregated PV
plants.



	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM building data with bus_id per
generator.










	
add_commissioning_date(buildings_gdf: geopandas.geodataframe.GeoDataFrame, start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, seed: int)

	Randomly and linear add start-up date to new pv generators.
:Parameters: * buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data with desaggregated PV



plants.





	start (pandas.Timestamp) – Minimum Timestamp to use.


	end (pandas.Timestamp) – Maximum Timestamp to use.


	seed (int) – Seed to use for random operations with NumPy and pandas.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM buildings data with start-up date added.










	
add_overlay_id_to_buildings(buildings_gdf: geopandas.geodataframe.GeoDataFrame, grid_federal_state_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Add information about overlay ID to buildings.
:Parameters: * buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.



	grid_federal_state_gdf (geopandas.GeoDataFrame) – GeoDataFrame with intersection shapes between counties and grid
districts.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM buildings data with overlay ID added.










	
add_weather_cell_id(buildings_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	




	
allocate_pv(q_mastr_gdf: gpd.GeoDataFrame, q_buildings_gdf: gpd.GeoDataFrame, seed: int) → tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]

	Allocate the MaStR pv generators to the OSM buildings.
This will determine a building for each pv generator if there are more
buildings than generators within a given AGS. Primarily generators are
distributed with the same qunatile as the buildings. Multiple assignment
is excluded.
:Parameters: * q_mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded and qcut MaStR data.



	q_buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing qcut OSM buildings data.


	seed (int) – Seed to use for random operations with NumPy and pandas.








	Returns

	tuple with two geopandas.GeoDataFrame s – GeoDataFrame containing MaStR data allocated to building IDs.
GeoDataFrame containing building data allocated to MaStR IDs.










	
allocate_scenarios(mastr_gdf: geopandas.geodataframe.GeoDataFrame, valid_buildings_gdf: geopandas.geodataframe.GeoDataFrame, last_scenario_gdf: geopandas.geodataframe.GeoDataFrame, scenario: str)

	Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	valid_buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.


	last_scenario_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings matched with pv generators from
temporally preceding scenario.


	scenario (str) – Scenario to desaggrgate and allocate.








	Returns

	tuple –


	geopandas.GeoDataFrame

	GeoDataFrame containing OSM buildings matched with pv generators.



	pandas.DataFrame

	DataFrame containing pv rooftop capacity per grid id.
















	
allocate_to_buildings(mastr_gdf: gpd.GeoDataFrame, buildings_gdf: gpd.GeoDataFrame) → tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]

	Allocate status quo pv rooftop generators to buildings.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing MaStR data with geocoded locations.



	buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data with buildings without an
AGS ID dropped.








	Returns

	tuple with two geopandas.GeoDataFrame s – GeoDataFrame containing MaStR data allocated to building IDs.
GeoDataFrame containing building data allocated to MaStR IDs.










	
building_area_range_per_cap_range(mastr_gdf: gpd.GeoDataFrame, cap_ranges: list[tuple[int | float, int | float]] | None = None, min_building_size: int | float = 10.0, upper_quantile: float = 0.95, lower_quantile: float = 0.05) → dict[tuple[int | float, int | float], tuple[int | float, int | float]]

	Estimate normal building area range per capacity range.
Calculate the mean roof load factor per capacity range from existing PV
plants.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	cap_ranges (list(tuple(int, int))) – List of capacity ranges to distinguish between. The first tuple should
start with a zero and the last one should end with infinite.


	min_building_size (int, float) – Minimal building size to consider for PV plants.


	upper_quantile (float) – Upper quantile to estimate maximum building size per capacity range.


	lower_quantile (float) – Lower quantile to estimate minimum building size per capacity range.








	Returns

	dict – Dictionary with estimated normal building area range per capacity
range.










	
calculate_building_load_factor(mastr_gdf: geopandas.geodataframe.GeoDataFrame, buildings_gdf: geopandas.geodataframe.GeoDataFrame, rounding: int = 4) → geopandas.geodataframe.GeoDataFrame

	Calculate the roof load factor from existing PV systems.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.


	rounding (int) – Rounding to use for load factor.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing geocoded MaStR data with calculated load
factor.










	
calculate_max_pv_cap_per_building(buildings_gdf: gpd.GeoDataFrame, mastr_gdf: gpd.GeoDataFrame, pv_cap_per_sq_m: float | int, roof_factor: float | int) → gpd.GeoDataFrame

	Calculate the estimated maximum possible PV capacity per building.


	Parameters

	
	buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.


	mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.


	pv_cap_per_sq_m (float, int) – Average expected, installable PV capacity per square meter.


	roof_factor (float, int) – Average for PV usable roof area share.






	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM buildings data with estimated maximum PV
capacity.










	
cap_per_bus_id(scenario: str) → pandas.core.frame.DataFrame

	Get table with total pv rooftop capacity per grid district.


	Parameters

	scenario (str) – Scenario name.



	Returns

	pandas.DataFrame – DataFrame with total rooftop capacity per mv grid.










	
cap_share_per_cap_range(mastr_gdf: gpd.GeoDataFrame, cap_ranges: list[tuple[int | float, int | float]] | None = None) → dict[tuple[int | float, int | float], float]

	Calculate the share of PV capacity from the total PV capacity within
capacity ranges.


	Parameters

	
	mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.


	cap_ranges (list(tuple(int, int))) – List of capacity ranges to distinguish between. The first tuple should
start with a zero and the last one should end with infinite.






	Returns

	dict – Dictionary with share of PV capacity from the total PV capacity within
capacity ranges.










	
clean_mastr_data(mastr_gdf: gpd.GeoDataFrame, max_realistic_pv_cap: int | float, min_realistic_pv_cap: int | float, seed: int) → gpd.GeoDataFrame

	Clean the MaStR data from implausible data.


	Drop MaStR ID duplicates.


	Drop generators with implausible capacities.





	Parameters

	
	mastr_gdf (pandas.DataFrame) – DataFrame containing MaStR data.


	max_realistic_pv_cap (int or float) – Maximum capacity, which is considered to be realistic.


	min_realistic_pv_cap (int or float) – Minimum capacity, which is considered to be realistic.


	seed (int) – Seed to use for random operations with NumPy and pandas.






	Returns

	pandas.DataFrame – DataFrame containing cleaned MaStR data.










	
create_scenario_table(buildings_gdf)

	Create mapping table pv_unit <-> building for scenario






	
desaggregate_pv(buildings_gdf: geopandas.geodataframe.GeoDataFrame, cap_df: pandas.core.frame.DataFrame, **kwargs) → geopandas.geodataframe.GeoDataFrame

	Desaggregate PV capacity on buildings within a given grid district.


	Parameters

	
	buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.


	cap_df (pandas.DataFrame) – DataFrame with total rooftop capacity per mv grid.






	Other Parameters

	
	prob_dict (dict) – Dictionary with values and probabilities per capacity range.


	cap_share_dict (dict) – Dictionary with share of PV capacity from the total PV capacity within
capacity ranges.


	building_area_range_dict (dict) – Dictionary with estimated normal building area range per capacity
range.


	load_factor_dict (dict) – Dictionary with mean roof load factor per capacity range.


	seed (int) – Seed to use for random operations with NumPy and pandas.


	pv_cap_per_sq_m (float, int) – Average expected, installable PV capacity per square meter.






	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM building data with desaggregated PV
plants.










	
desaggregate_pv_in_mv_grid(buildings_gdf: gpd.GeoDataFrame, pv_cap: float | int, **kwargs) → gpd.GeoDataFrame

	Desaggregate PV capacity on buildings within a given grid district.
:Parameters: * buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing buildings within the grid district.



	pv_cap (float, int) – PV capacity to desaggregate.








	Other Parameters

	
	prob_dict (dict) – Dictionary with values and probabilities per capacity range.


	cap_share_dict (dict) – Dictionary with share of PV capacity from the total PV capacity within
capacity ranges.


	building_area_range_dict (dict) – Dictionary with estimated normal building area range per capacity
range.


	load_factor_dict (dict) – Dictionary with mean roof load factor per capacity range.


	seed (int) – Seed to use for random operations with NumPy and pandas.


	pv_cap_per_sq_m (float, int) – Average expected, installable PV capacity per square meter.






	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM building data with desaggregated PV
plants.










	
determine_end_of_life_gens(mastr_gdf: geopandas.geodataframe.GeoDataFrame, scenario_timestamp: pandas._libs.tslibs.timestamps.Timestamp, pv_rooftop_lifetime: pandas._libs.tslibs.timedeltas.Timedelta) → geopandas.geodataframe.GeoDataFrame

	Determine if an old PV system has reached its end of life.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	scenario_timestamp (pandas.Timestamp) – Timestamp at which the scenario takes place.


	pv_rooftop_lifetime (pandas.Timedelta) – Average expected lifetime of PV rooftop systems.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing geocoded MaStR data and info if the system
has reached its end of life.










	
drop_buildings_outside_grids(buildings_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Drop all buildings outside of grid areas.
:Parameters: buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.


	Returns

	gepandas.GeoDataFrame – GeoDataFrame containing OSM buildings data
with buildings without an bus ID dropped.










	
drop_buildings_outside_muns(buildings_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Drop all buildings outside of municipalities.
:Parameters: buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing OSM buildings data.


	Returns

	gepandas.GeoDataFrame – GeoDataFrame containing OSM buildings data
with buildings without an AGS ID dropped.










	
drop_gens_outside_muns(mastr_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Drop all generators outside of municipalities.
:Parameters: mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame with valid and cleaned MaStR data.


	Returns

	gepandas.GeoDataFrame – GeoDataFrame with valid and cleaned MaStR data
with generatos without an AGS ID dropped.










	
drop_unallocated_gens(gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Drop generators which did not get allocated.


	Parameters

	gdf (geopandas.GeoDataFrame) – GeoDataFrame containing MaStR data allocated to building IDs.



	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing MaStR data with generators dropped which did
not get allocated.










	
egon_building_peak_loads()

	




	
federal_state_data(to_crs: pyproj.crs.crs.CRS) → geopandas.geodataframe.GeoDataFrame

	Get feder state data from eGo^n Database.
:Parameters: to_crs (pyproj.crs.crs.CRS) – CRS to transform geometries to.


	Returns

	geopandas.GeoDataFrame – GeoDataFrame with federal state data.










	
frame_to_numeric(df: pd.DataFrame | gpd.GeoDataFrame) → pd.DataFrame | gpd.GeoDataFrame

	Try to convert all columns of a DataFrame to numeric ignoring errors.
:Parameters: df (pandas.DataFrame or geopandas.GeoDataFrame)


	Returns

	pandas.DataFrame or geopandas.GeoDataFrame










	
get_probability_for_property(mastr_gdf: gpd.GeoDataFrame, cap_range: tuple[int | float, int | float], prop: str) → tuple[np.array, np.array]

	Calculate the probability of the different options of a property of the
existing PV plants.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	cap_range (tuple(int, int)) – Capacity range of PV plants to look at.


	prop (str) – Property to calculate probabilities for. String needs to be in columns
of mastr_gdf.








	Returns

	tuple –


	numpy.array

	Unique values of property.



	numpy.array

	Probabilties per unique value.
















	
grid_districts(epsg: int) → geopandas.geodataframe.GeoDataFrame

	Load mv grid district geo data from eGo^n Database as
geopandas.GeoDataFrame.
:Parameters: epsg (int) – EPSG ID to use as CRS.


	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing mv grid district ID and geo shapes data.










	
infer_voltage_level(units_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Infer nan values in voltage level derived from generator capacity to
the power plants.


	Parameters

	
	units_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing units with voltage levels from MaStR


	Returnsunits_gdf (gpd.GeoDataFrame)


	——-


	geopandas.GeoDataFrame – GeoDataFrame containing units all having assigned a voltage level.













	
load_building_data()

	Read buildings from DB
Tables:


	openstreetmap.osm_buildings_filtered (from OSM)


	openstreetmap.osm_buildings_synthetic (synthetic, created by us)




Use column id for both as it is unique hence you concat both datasets.
If INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be
loaded.


	Returns

	gepandas.GeoDataFrame – GeoDataFrame containing OSM buildings data with buildings without an
AGS ID dropped.










	
load_mastr_data()

	Read PV rooftop data from MaStR CSV
Note: the source will be replaced as soon as the MaStR data is available
in DB.
:returns: geopandas.GeoDataFrame – GeoDataFrame containing MaStR data with geocoded locations.






	
mastr_data(index_col: str | int | list[str] | list[int]) → gpd.GeoDataFrame

	Read MaStR data from database.


	Parameters

	index_col (str, int or list of str or int) – Column(s) to use as the row labels of the DataFrame.



	Returns

	pandas.DataFrame – DataFrame containing MaStR data.










	
mean_load_factor_per_cap_range(mastr_gdf: gpd.GeoDataFrame, cap_ranges: list[tuple[int | float, int | float]] | None = None) → dict[tuple[int | float, int | float], float]

	Calculate the mean roof load factor per capacity range from existing PV
plants.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	cap_ranges (list(tuple(int, int))) – List of capacity ranges to distinguish between. The first tuple should
start with a zero and the last one should end with infinite.








	Returns

	dict – Dictionary with mean roof load factor per capacity range.










	
municipality_data() → geopandas.geodataframe.GeoDataFrame

	Get municipality data from eGo^n Database.
:returns: gepandas.GeoDataFrame – GeoDataFrame with municipality data.






	
osm_buildings(to_crs: pyproj.crs.crs.CRS) → geopandas.geodataframe.GeoDataFrame

	Read OSM buildings data from eGo^n Database.
:Parameters: to_crs (pyproj.crs.crs.CRS) – CRS to transform geometries to.


	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM buildings data.










	
overlay_grid_districts_with_counties(mv_grid_district_gdf: geopandas.geodataframe.GeoDataFrame, federal_state_gdf: geopandas.geodataframe.GeoDataFrame) → geopandas.geodataframe.GeoDataFrame

	Calculate the intersections of mv grid districts and counties.
:Parameters: * mv_grid_district_gdf (gpd.GeoDataFrame) – GeoDataFrame containing mv grid district ID and geo shapes data.



	federal_state_gdf (gpd.GeoDataFrame) – GeoDataFrame with federal state data.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM buildings data.










	
probabilities(mastr_gdf: gpd.GeoDataFrame, cap_ranges: list[tuple[int | float, int | float]] | None = None, properties: list[str] | None = None) → dict

	Calculate the probability of the different options of properties of the
existing PV plants.
:Parameters: * mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing geocoded MaStR data.



	cap_ranges (list(tuple(int, int))) – List of capacity ranges to distinguish between. The first tuple should
start with a zero and the last one should end with infinite.


	properties (list(str)) – List of properties to calculate probabilities for. Strings need to be
in columns of mastr_gdf.








	Returns

	dict – Dictionary with values and probabilities per capacity range.










	
pv_rooftop_to_buildings()

	Main script, executed as task






	
scenario_data(carrier: str = 'solar_rooftop', scenario: str = 'eGon2035') → pandas.core.frame.DataFrame

	Get scenario capacity data from eGo^n Database.
:Parameters: * carrier (str) – Carrier type to filter table by.



	scenario (str) – Scenario to filter table by.








	Returns

	geopandas.GeoDataFrame – GeoDataFrame with scenario capacity data in GW.










	
sort_and_qcut_df(df: pd.DataFrame | gpd.GeoDataFrame, col: str, q: int) → pd.DataFrame | gpd.GeoDataFrame

	Determine the quantile of a given attribute in a (Geo)DataFrame.
Sort the (Geo)DataFrame in ascending order for the given attribute.
:Parameters: * df (pandas.DataFrame or geopandas.GeoDataFrame) – (Geo)DataFrame to sort and qcut.



	col (str) – Name of the attribute to sort and qcut the (Geo)DataFrame on.


	q (int) – Number of quantiles.








	Returns

	pandas.DataFrame or gepandas.GeoDataFrame – Sorted and qcut (Geo)DataFrame.










	
synthetic_buildings(to_crs: pyproj.crs.crs.CRS) → geopandas.geodataframe.GeoDataFrame

	Read synthetic buildings data from eGo^n Database.
:Parameters: to_crs (pyproj.crs.crs.CRS) – CRS to transform geometries to.


	Returns

	geopandas.GeoDataFrame – GeoDataFrame containing OSM buildings data.










	
timer_func(func)

	




	
validate_output(desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame, desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame) → None

	Validate output.


	Validate that there are exactly as many buildings with a pv system as
there are pv systems with a building


	Validate that the building IDs with a pv system are the same building
IDs as assigned to the pv systems


	Validate that the pv system IDs with a building are the same pv system
IDs as assigned to the buildings





	Parameters

	
	desagg_mastr_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing MaStR data allocated to building IDs.


	desagg_buildings_gdf (geopandas.GeoDataFrame) – GeoDataFrame containing building data allocated to MaStR IDs.















          

      

      

    

  

    
      
          
            
  
wind_farms


	
generate_map()

	Generates a map with the position of all the wind farms


	Parameters

	*No parameters required










	
generate_wind_farms()

	Generate wind farms based on existing wind farms.


	Parameters

	*No parameters required










	
insert()

	Main function. Import power objectives generate results calling the
functions “generate_wind_farms” and  “wind_power_states”.


	Parameters

	*No parameters required










	
wind_power_states(state_wf, state_wf_ni, state_mv_districts, target_power, scenario_year, source, fed_state)

	Import OSM data from a Geofabrik .pbf file into a PostgreSQL
database.


	Parameters

	
	state_wf (geodataframe, mandatory) – gdf containing all the wf in the state created based on existing wf.


	state_wf_ni (geodataframe, mandatory) – potential areas in the the state wich don’t intersect any existing wf


	state_mv_districts (geodataframe, mandatory) – gdf containing all the MV/HV substations in the state


	target_power (int, mandatory) – Objective power for a state given in MW


	scenario_year (str, mandatory) – name of the scenario


	source (str, mandatory) – Type of energy genetor. Always “Wind_onshore” for this script.


	fed_state (str, mandatory) – Name of the state where the wind farms will be allocated















          

      

      

    

  

    
      
          
            
  
wind_offshore


	
insert()

	Include the offshore wind parks in egon-data.
locations and installed capacities based on: NEP2035_V2021_scnC2035


	Parameters

	*No parameters required












          

      

      

    

  

    
      
          
            
  
pypsaeursec

The central module containing all code dealing with importing data from
the pysa-eur-sec scenario parameter creation


	
class PypsaEurSec(dependencies)

	Bases: egon.data.datasets.Dataset






	
clean_database()

	Remove all components abroad for eGon100RE of the database

Remove all components abroad and their associated time series of
the datase for the scenario ‘eGon100RE’.


	Parameters

	None



	Returns

	None










	
neighbor_reduction()

	




	
overwrite_H2_pipeline_share()

	Overwrite retrofitted_CH4pipeline-to-H2pipeline_share value

Overwrite retrofitted_CH4pipeline-to-H2pipeline_share in the
scenario parameter table if p-e-s is run.
This function write in the database and has no return.






	
read_network()

	




	
run_pypsa_eur_sec()

	






          

      

      

    

  

    
      
          
            
  
re_potential_areas

The central module containing all code dealing with importing data on
potential areas for wind onshore and ground-mounted PV.


	
class EgonRePotentialAreaPvAgriculture(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom

	




	
id

	








	
class EgonRePotentialAreaPvRoadRailway(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom

	




	
id

	








	
class EgonRePotentialAreaWind(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
geom

	




	
id

	








	
create_tables()

	Create tables for RE potential areas






	
insert_data()

	Insert data into DB








          

      

      

    

  

    
      
          
            
  
saltcavern

The central module containing all code dealing with bgr data.

This module either directly contains the code dealing with importing bgr
data, or it re-exports everything needed to handle it. Please refrain
from importing code from any modules below this one, because it might
lead to unwanted behaviour.

If you have to import code from a module below this one because the code
isn’t exported from this module, please file a bug, so we can fix this.


	
class SaltcavernData(dependencies)

	Bases: egon.data.datasets.Dataset






	
to_postgres()

	Write BGR saline structures to database.








          

      

      

    

  

    
      
          
            
  
scenario_parameters



	parameters





The central module containing all code dealing with scenario table.


	
class EgonScenario(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
description

	




	
electricity_parameters

	




	
gas_parameters

	




	
global_parameters

	




	
heat_parameters

	




	
mobility_parameters

	




	
name

	








	
class ScenarioParameters(dependencies)

	Bases: egon.data.datasets.Dataset

Create and fill table with central parameters for each scenario

This dataset creates and fills a table in the database that includes central parameters
for each scenarios. These parameters are mostly from extrernal sources, they are defined
and referenced within this dataset.
The table is acced by various datasets to access the parameters for all sectors.


	Dependencies

	
	Setup






	Resulting tables

	
	scenario.egon_scenario_parameters is created and filled









	
name = 'ScenarioParameters'

	




	
version = '0.0.12'

	








	
create_table()

	Create table for scenarios
:returns: None.






	
download_pypsa_technology_data()

	Downlad PyPSA technology data results.






	
get_sector_parameters(sector, scenario=None)

	Returns parameters for each sector as dictionary.

If scenario=None data for all scenarios is returned as pandas.DataFrame.
Otherwise the parameters of the specific scenario are returned as a dict.


	Parameters

	
	sector (str) – Name of the sector.
Options are: [‘global’, ‘electricity’, ‘heat’, ‘gas’, ‘mobility’]


	scenario (str, optional) – Name of the scenario. The default is None.






	Returns

	values (dict or pandas.DataFrane) – List or table of parameters for the selected sector










	
insert_scenarios()

	Insert scenarios and their parameters to scenario table


	Returns

	None.












          

      

      

    

  

    
      
          
            
  
parameters

The module containing all parameters for the scenario table


	
annualize_capital_costs(overnight_costs, lifetime, p)

	
	Parameters

	
	overnight_costs (float) – Overnight investment costs in EUR/MW or EUR/MW/km


	lifetime (int) – Number of years in which payments will be made


	p (float) – Interest rate in p.u.






	Returns

	float – Annualized capital costs in EUR/MW/a or EUR/MW/km/a










	
electricity(scenario)

	Returns paramaters of the electricity sector for the selected scenario.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	parameters (dict) – List of parameters of electricity sector










	
gas(scenario)

	Returns paramaters of the gas sector for the selected scenario.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	parameters (dict) – List of parameters of gas sector










	
global_settings(scenario)

	Returns global paramaters for the selected scenario.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	parameters (dict) – List of global parameters










	
heat(scenario)

	Returns paramaters of the heat sector for the selected scenario.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	parameters (dict) – List of parameters of heat sector










	
mobility(scenario)

	Returns parameters of the mobility sector for the selected scenario.


	Parameters

	scenario (str) – Name of the scenario.



	Returns

	parameters (dict) – List of parameters of mobility sector





Notes

For a detailed description of the parameters see module
egon.data.datasets.emobility.motorized_individual_travel.






	
read_costs(df, technology, parameter, value_only=True)

	




	
read_csv(year)

	






          

      

      

    

  

    
      
          
            
  
storages



	home_batteries

	pumped_hydro





The central module containing all code dealing with power plant data.


	
class EgonStorages(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
carrier

	




	
el_capacity

	




	
geom

	




	
id

	




	
scenario

	




	
source_id

	




	
sources

	




	
voltage_level

	








	
class Storages(dependencies)

	Bases: egon.data.datasets.Dataset






	
allocate_pumped_hydro_eGon100RE()

	Allocates pumped_hydro plants for eGon100RE scenario based on a
prox-to-now method applied on allocated pumped-hydro plants in the eGon2035
scenario.


	Parameters

	None



	Returns

	None










	
allocate_pumped_hydro_eGon2035(export=True)

	Allocates pumped_hydro plants for eGon2035 scenario and either exports
results to data base or returns as a dataframe


	Parameters

	export (bool) – Choose if allocated pumped hydro plants should be exported to the data
base. The default is True.
If export=False a data frame will be returned



	Returns

	power_plants (pandas.DataFrame) – List of pumped hydro plants in ‘eGon2035’ scenario










	
allocate_pv_home_batteries_to_grids()

	




	
create_tables()

	Create tables for power plant data
:returns: None.






	
home_batteries_per_scenario(scenario)

	Allocates home batteries which define a lower boundary for extendable
battery storage units. The overall installed capacity is taken from NEP
for eGon2035 scenario. The spatial distribution of installed battery
capacities is based on the installed pv rooftop capacity.


	Parameters

	None



	Returns

	None












          

      

      

    

  

    
      
          
            
  
home_batteries

Home Battery allocation to buildings

Main module for allocation of home batteries onto buildings and sizing them
depending on pv rooftop system size.

Contents of this module
* Creation of DB tables
* Allocate given home battery capacity per mv grid to buildings with pv rooftop


systems. The sizing of the home battery system depends on the size of the
pv rooftop system and can be set within the datasets.yml. Default sizing is
1:1 between the pv rooftop capacity (kWp) and the battery capacity (kWh).





	Write results to DB




Configuration

The config of this dataset can be found in datasets.yml in section
home_batteries.

Scenarios and variations

Assumptions can be changed within the datasets.yml.

Only buildings with a pv rooftop systems are considered within the allocation
process. The default sizing of home batteries is 1:1 between the pv rooftop
capacity (kWp) and the battery capacity (kWh). Reaching the exact value of the
allocation of battery capacities per grid area leads to slight deviations from
this specification.

## Methodology

The selection of buildings is done randomly until a result is reached which is
close to achieving the sizing specification.


	
class EgonHomeBatteries(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
building_id

	




	
bus_id

	




	
capacity

	




	
index

	




	
p_nom

	




	
scenario

	




	
targets = {'home_batteries': {'schema': 'supply', 'table': 'egon_home_batteries'}}

	








	
allocate_home_batteries_to_buildings()

	Allocate home battery storage systems to buildings with pv rooftop systems






	
create_table(df)

	Create mapping table home battery <-> building id






	
get_cbat_pbat_ratio()

	Mean ratio between the storage capacity and the power of the pv rooftop
system


	Returns

	int – Mean ratio between the storage capacity and the power of the pv
rooftop system












          

      

      

    

  

    
      
          
            
  
pumped_hydro

The module containing code allocating pumped hydro plants based on
data from MaStR and NEP.


	
apply_voltage_level_thresholds(power_plants)

	Assigns voltage level to power plants based on thresholds defined for
the egon project.


	Parameters

	power_plants (pandas.DataFrame) – Power plants and their electrical capacity



	Returns

	pandas.DataFrame – Power plants including voltage_level










	
get_location(unmatched)

	Gets a geolocation for units which couldn’t be matched using MaStR data.
Uses geolocator and the city name from NEP data to create longitude and
latitude for a list of unmatched units.


	Parameters

	unmatched (pandas.DataFrame) – storage units from NEP which are not matched to MaStR but containing
a city information



	Returns

	
	unmatched (pandas.DataFrame) – Units for which no geolocation could be identified


	located (pandas.DataFrame) – Units with a geolocation based on their city information















	
match_storage_units(nep, mastr, matched, buffer_capacity=0.1, consider_location='plz', consider_carrier=True, consider_capacity=True)

	Match storage_units (in this case only pumped hydro) from MaStR
to list of power plants from NEP


	Parameters

	
	nep (pandas.DataFrame) – storage units from NEP which are not matched to MaStR


	mastr (pandas.DataFrame) – Pstorage_units from MaStR which are not matched to NEP


	matched (pandas.DataFrame) – Already matched storage_units


	buffer_capacity (float, optional) – Maximum difference in capacity in p.u. The default is 0.1.






	Returns

	
	matched (pandas.DataFrame) – Matched CHP


	mastr (pandas.DataFrame) – storage_units from MaStR which are not matched to NEP


	nep (pandas.DataFrame) – storage_units from NEP which are not matched to MaStR















	
select_mastr_pumped_hydro()

	Select pumped hydro plants from MaStR


	Returns

	pandas.DataFrame – Pumped hydro plants from MaStR










	
select_nep_pumped_hydro()

	Select pumped hydro plants from NEP power plants list


	Returns

	pandas.DataFrame – Pumped hydro plants from NEP list












          

      

      

    

  

    
      
          
            
  
storages_etrago

The central module containing all code dealing with existing storage units for
eTraGo.


	
class StorageEtrago(dependencies)

	Bases: egon.data.datasets.Dataset






	
extendable_batteries()

	




	
extendable_batteries_per_scenario(scenario)

	




	
insert_PHES()

	






          

      

      

    

  

    
      
          
            
  
substation

The central module containing code to create substation tables


	
class EgonEhvTransferBuses(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
dbahn

	




	
frequency

	




	
lat

	




	
lon

	




	
operator

	




	
osm_id

	




	
osm_www

	




	
point

	




	
polygon

	




	
power_type

	




	
ref

	




	
status

	




	
subst_name

	




	
substation

	




	
voltage

	








	
class EgonHvmvTransferBuses(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
bus_id

	




	
dbahn

	




	
frequency

	




	
lat

	




	
lon

	




	
operator

	




	
osm_id

	




	
osm_www

	




	
point

	




	
polygon

	




	
power_type

	




	
ref

	




	
status

	




	
subst_name

	




	
substation

	




	
voltage

	








	
class SubstationExtraction(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_sql_functions()

	Defines Postgresql functions needed to extract substation from osm


	Returns

	None.










	
create_tables()

	Create tables for substation data
:returns: None.






	
transfer_busses()

	






          

      

      

    

  

    
      
          
            
  
vg250

The central module containing all code dealing with VG250 data.

This module either directly contains the code dealing with importing VG250
data, or it re-exports everything needed to handle it. Please refrain
from importing code from any modules below this one, because it might
lead to unwanted behaviour.

If you have to import code from a module below this one because the code
isn’t exported from this module, please file a bug, so we can fix this.


	
class Vg250(dependencies)

	Bases: egon.data.datasets.Dataset


	
filename = 'https://daten.gdz.bkg.bund.de/produkte/vg/vg250_ebenen_0101/2020/vg250_01-01.geo84.shape.ebenen.zip'

	








	
add_metadata()

	Writes metadata JSON string into table comment.






	
cleaning_and_preperation()

	




	
download_files()

	Download VG250 (Verwaltungsgebiete) shape files.






	
nuts_mview()

	




	
to_postgres()

	




	
vg250_metadata_resources_fields()

	






          

      

      

    

  

    
      
          
            
  
zensus

The central module containing all code dealing with importing Zensus data.


	
class ZensusMiscellaneous(dependencies)

	Bases: egon.data.datasets.Dataset






	
class ZensusPopulation(dependencies)

	Bases: egon.data.datasets.Dataset






	
adjust_zensus_misc()

	Delete unpopulated cells in zensus-households, -buildings and -apartments

Some unpopulated zensus cells are listed in:
- egon_destatis_zensus_household_per_ha
- egon_destatis_zensus_building_per_ha
- egon_destatis_zensus_apartment_per_ha

This can be caused by missing population
information due to privacy or other special cases (e.g. holiday homes
are listed as buildings but are not permanently populated.)
In the following tasks of egon-data, only data of populated cells is used.


	Returns

	None.










	
create_combined_zensus_table()

	Create combined table with buildings, apartments and population per cell

Only apartment and building data with acceptable data quality
(quantity_q<2) is used, all other data is dropped. For more details on data
quality see Zensus docs:
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html

If there’s no data on buildings or apartments for a certain cell, the value
for building_count resp. apartment_count contains NULL.






	
create_zensus_misc_tables()

	Create tables for zensus data in postgres database






	
create_zensus_pop_table()

	Create tables for zensus data in postgres database






	
download_and_check(url, target_file, max_iteration=5)

	Download file from url (http) if it doesn’t exist and check afterwards.
If bad zip remove file and re-download. Repeat until file is fine or
reached maximum iterations.






	
download_zensus_misc()

	Download Zensus csv files on data per hectare grid cell.






	
download_zensus_pop()

	Download Zensus csv file on population per hectare grid cell.






	
filter_zensus_misc(filename, dataset)

	This block filters lines in the source CSV file and copies
the appropriate ones to the destination based on grid_id values.


	Parameters

	
	filename (str) – Path to input csv-file


	dataset (str, optional) – Toggles between production (dataset=’Everything’) and test mode e.g.
(dataset=’Schleswig-Holstein’).
In production mode, data covering entire Germany
is used. In the test mode a subset of this data is used for testing the
workflow.






	Returns

	str – Path to output csv-file










	
filter_zensus_population(filename, dataset)

	This block filters lines in the source CSV file and copies
the appropriate ones to the destination based on geometry.


	Parameters

	
	filename (str) – Path to input csv-file


	dataset (str, optional) – Toggles between production (dataset=’Everything’) and test mode e.g.
(dataset=’Schleswig-Holstein’).
In production mode, data covering entire Germany
is used. In the test mode a subset of this data is used for testing the
workflow.






	Returns

	str – Path to output csv-file










	
population_to_postgres()

	Import Zensus population data to postgres database






	
select_geom()

	Select the union of the geometries of Schleswig-Holstein from the
database, convert their projection to the one used in the CSV file,
output the result to stdout as a GeoJSON string and read it into a
prepared shape for filtering.






	
target(source, dataset)

	Generate the target path corresponding to a source path.


	Parameters

	dataset (str) – Toggles between production (dataset=’Everything’) and test mode e.g.
(dataset=’Schleswig-Holstein’).
In production mode, data covering entire Germany
is used. In the test mode a subset of this data is used for testing the
workflow.



	Returns

	Path – Path to target csv-file










	
zensus_misc_to_postgres()

	Import data on buildings, households and apartments to postgres db








          

      

      

    

  

    
      
          
            
  
db


	
assign_gas_bus_id(dataframe, scn_name, carrier)

	Assign `bus_id`s to points according to location.

The points are taken from the given dataframe and the geometries by
which the bus_id`s are assigned to them are taken from the
`grid.egon_gas_voronoi table.


	Parameters

	
	dataframe (pandas.DataFrame) – DataFrame cointaining points


	scn_name (str) – Name of the scenario


	carrier (str) – Name of the carrier






	Returns

	res (pandas.DataFrame) – Dataframe including bus_id










	
check_db_unique_violation(func)

	Wrapper to catch psycopg’s UniqueViolation errors during concurrent DB
commits.

Preferrably used with next_etrago_id(). Retries DB operation 10
times before raising original exception.

Can be used as a decorator like this:

>>> @check_db_unique_violation
... def commit_something_to_database():
...     # commit something here
...    return
...
>>> commit_something_to_database()  # doctest: +SKIP





Examples

Add new bus to eTraGo’s bus table:

>>> from egon.data import db
>>> from egon.data.datasets.etrago_setup import EgonPfHvBus
...
>>> @check_db_unique_violation
... def add_etrago_bus():
...     bus_id = db.next_etrago_id("bus")
...     with db.session_scope() as session:
...         emob_bus_id = db.next_etrago_id("bus")
...         session.add(
...             EgonPfHvBus(
...                 scn_name="eGon2035",
...                 bus_id=bus_id,
...                 v_nom=1,
...                 carrier="whatever",
...                 x=52,
...                 y=13,
...                 geom="<some_geom>"
...             )
...         )
...         session.commit()
...
>>> add_etrago_bus()  # doctest: +SKIP






	Parameters

	func (func) – Function to wrap





Notes

Background: using next_etrago_id() may cause trouble if tasks are
executed simultaneously, cf.
https://github.com/openego/eGon-data/issues/514

Important: your function requires a way to escape the violation as the
loop will not terminate until the error is resolved! In case of eTraGo
tables you can use next_etrago_id(), see example above.






	
credentials()

	Return local database connection parameters.


	Returns

	dict – Complete DB connection information










	
engine()

	Engine for local database.






	
engine_for

	




	
execute_sql(sql_string)

	Execute a SQL expression given as string.

The SQL expression passed as plain string is convert to a
sqlalchemy.sql.expression.TextClause.


	Parameters

	sql_string (str) – SQL expression










	
execute_sql_script(script, encoding='utf-8-sig')

	Execute a SQL script given as a file name.


	Parameters

	
	script (str) – Path of the SQL-script


	encoding (str) – Encoding which is used for the SQL file. The default is “utf-8-sig”.






	Returns

	None.










	
next_etrago_id(component)

	Select next id value for components in etrago tables


	Parameters

	component (str) – Name of component



	Returns

	next_id (int) – Next index value





Notes

To catch concurrent DB commits, consider to use
check_db_unique_violation() instead.






	
select_dataframe(sql, index_col=None, warning=True)

	Select data from local database as pandas.DataFrame


	Parameters

	
	sql (str) – SQL query to be executed.


	index_col (str, optional) – Column(s) to set as index(MultiIndex). The default is None.






	Returns

	df (pandas.DataFrame) – Data returned from SQL statement.










	
select_geodataframe(sql, index_col=None, geom_col='geom', epsg=3035)

	Select data from local database as geopandas.GeoDataFrame


	Parameters

	
	sql (str) – SQL query to be executed.


	index_col (str, optional) – Column(s) to set as index(MultiIndex). The default is None.


	geom_col (str, optional) – column name to convert to shapely geometries. The default is ‘geom’.


	epsg (int, optional) – EPSG code specifying output projection. The default is 3035.






	Returns

	gdf (pandas.DataFrame) – Data returned from SQL statement.










	
session_scope()

	Provide a transactional scope around a series of operations.






	
session_scoped(function)

	Provide a session scope to a function.

Can be used as a decorator like this:

>>> @session_scoped
... def get_bind(session):
...     return session.get_bind()
...
>>> get_bind()
Engine(postgresql+psycopg2://egon:***@127.0.0.1:59734/egon-data)





Note that the decorated function needs to accept a parameter named
session, but is called without supplying a value for that parameter
because the parameter’s value will be filled in by session_scoped.
Using this decorator allows saving an indentation level when defining
such functions but it also has other usages.






	
submit_comment(json, schema, table)

	Add comment to table.

We use Open Energy Metadata [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/v141/metadata_key_description.md]
standard for describing our data. Metadata is stored as JSON in the table
comment.


	Parameters

	
	json (str) – JSON string reflecting comment


	schema (str) – The target table’s database schema


	table (str) – Database table on which to put the given comment















          

      

      

    

  

    
      
          
            
  
metadata


	
context()

	Project context information for metadata


	Returns

	dict – OEP metadata conform data license information










	
generate_resource_fields_from_db_table(schema, table, geom_columns=None)

	Generate a template for the resource fields for metadata from a
database table.

For details on the fields see field 14.6.1 of Open Energy Metadata [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/v141/metadata_key_description.md] standard.
The fields name and type are automatically filled, the description
and unit must be filled manually.

Examples

>>> from egon.data.metadata import generate_resource_fields_from_db_table
>>> resources = generate_resource_fields_from_db_table(
...     'openstreetmap', 'osm_point', ['geom', 'geom_centroid']
... )  # doctest: +SKIP






	Parameters

	
	schema (str) – The target table’s database schema


	table (str) – Database table on which to put the given comment


	geom_columns (list of str) – Names of all geometry columns in the table. This is required to return
Geometry data type for those columns as SQL Alchemy does not recognize
them correctly. Defaults to [‘geom’].






	Returns

	list of dict – Resource fields










	
generate_resource_fields_from_sqla_model(model)

	Generate a template for the resource fields for metadata from a SQL
Alchemy model.

For details on the fields see field 14.6.1 of Open Energy Metadata [https://github.com/OpenEnergyPlatform/oemetadata/blob/develop/metadata/v141/metadata_key_description.md] standard.
The fields name and type are automatically filled, the description
and unit must be filled manually.

Examples

>>> from egon.data.metadata import generate_resource_fields_from_sqla_model
>>> from egon.data.datasets.zensus_vg250 import Vg250Sta
>>> resources = generate_resource_fields_from_sqla_model(Vg250Sta)






	Parameters

	model (sqlalchemy.ext.declarative.declarative_base()) – SQLA model



	Returns

	list of dict – Resource fields










	
license_ccby(attribution)

	License information for Creative Commons Attribution 4.0 International
(CC-BY-4.0)


	Parameters

	attribution (str) – Attribution for the dataset incl. © symbol, e.g. ‘© GeoBasis-DE / BKG’



	Returns

	dict – OEP metadata conform data license information










	
license_geonutzv(attribution)

	License information for GeoNutzV


	Parameters

	attribution (str) – Attribution for the dataset incl. © symbol, e.g. ‘© GeoBasis-DE / BKG’



	Returns

	dict – OEP metadata conform data license information










	
license_odbl(attribution)

	License information for Open Data Commons Open Database License (ODbL-1.0)


	Parameters

	attribution (str) – Attribution for the dataset incl. © symbol, e.g.
‘© OpenStreetMap contributors’



	Returns

	dict – OEP metadata conform data license information










	
licenses_datenlizenz_deutschland(attribution)

	License information for Datenlizenz Deutschland


	Parameters

	attribution (str) – Attribution for the dataset incl. © symbol, e.g. ‘© GeoBasis-DE / BKG’



	Returns

	dict – OEP metadata conform data license information










	
meta_metadata()

	Meta data on metadata


	Returns

	dict – OEP metadata conform metadata on metadata












          

      

      

    

  

    
      
          
            
  
subprocess

Exensions to Python’s subprocess module.

More specifically, this module provides a customized version of
subprocess.run(), which always sets check=True,
capture_output=True, enhances the raised exceptions string representation
with additional output information and makes it slightly more readable when
encountered in a stack trace.


	
exception CalledProcessError(returncode, cmd, output=None, stderr=None)

	Bases: subprocess.CalledProcessError

A more verbose version of subprocess.CalledProcessError.

Replaces the standard string representation of a
subprocess.CalledProcessError with one that has more output and
error information and is formatted to be more readable in a stack trace.






	
run(*args, **kwargs)

	A “safer” version of subprocess.run().

“Safer” in this context means that this version always raises
CalledProcessError if the process in question returns a
non-zero exit status. This is done by setting check=True and
capture_output=True, so you don’t have to specify these yourself anymore.
You can though, if you want to override these defaults.
Other than that, the function accepts the same parameters as
subprocess.run().
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        	(EgonEvCountRegistrationDistrict attribute)


      


      	bev_mini (EgonEvCountMunicipality attribute)

      
        	(EgonEvCountMvGridDistrict attribute)


        	(EgonEvCountRegistrationDistrict attribute)


      


      	bez (HvmvSubstPerMunicipality attribute)

      
        	(Vg250Gem attribute)


        	(Vg250GemClean attribute)


        	(Vg250GemPopulation attribute)


        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	bnetza_id (NEP2021ConvPowerPlants attribute)


      	boundary_gdf() (in module egon.data.datasets.emobility.heavy_duty_transport.data_io)


      	bsg (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	build_year (EgonPfHvGenerator attribute)

      
        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStore attribute)


        	(EgonPfHvTransformer attribute)


      


      	building (OsmBuildingsFiltered attribute)

      
        	(OsmBuildingsSynthetic attribute)


      


      	building_area_range_per_cap_range() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	building_id (BuildingElectricityPeakLoads attribute)

      
        	(BuildingHeatPeakLoads attribute), [1]


        	(EgonCtsElectricityDemandBuildingShare attribute)


        	(EgonCtsHeatDemandBuildingShare attribute)


        	(EgonHeatTimeseries attribute)


        	(EgonHomeBatteries attribute)


        	(EgonHpCapacityBuildings attribute)


        	(EgonIndividualHeatingPeakLoads attribute)


        	(EgonMapZensusMvgdBuildings attribute)


        	(EgonPowerPlantPvRoofBuilding attribute)


        	(HouseholdElectricityProfilesOfBuildings attribute)


      


  

  	
      	BuildingElectricityPeakLoads (class in egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	BuildingHeatPeakLoads (class in egon.data.datasets.electricity_demand_timeseries.cts_buildings)

      
        	(class in egon.data.datasets.heat_supply.individual_heating)


      


      	buildings_with_amenities() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	buildings_without_amenities() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	bus (DemandCurvesOsmIndustry attribute)

      
        	(DemandCurvesSitesIndustry attribute)


        	(EgonDemandregioSitesIndElectricityDsmTimeseries attribute)


        	(EgonEtragoElectricityCtsDsmTimeseries attribute)


        	(EgonOsmIndLoadCurvesIndividualDsmTimeseries attribute)


        	(EgonPfHvGenerator attribute)


        	(EgonPfHvLoad attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStore attribute)


        	(EgonSitesIndLoadCurvesIndividualDsmTimeseries attribute)


      


      	bus0 (EgonPfHvBusmap attribute)

      
        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvTransformer attribute)


      


      	bus1 (EgonPfHvBusmap attribute)

      
        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvTransformer attribute)


      


      	bus_id (DemandCurvesOsmIndustryIndividual attribute)

      
        	(DemandCurvesSitesIndustryIndividual attribute)


        	(EgonCtsElectricityDemandBuildingShare attribute)


        	(EgonCtsHeatDemandBuildingShare attribute)


        	(EgonEhvSubstation attribute)


        	(EgonEhvSubstationVoronoi attribute)


        	(EgonEhvTransferBuses attribute)


        	(EgonEtragoElectricityCts attribute)


        	(EgonEtragoElectricityHouseholds attribute)


        	(EgonEtragoHeatCts attribute)


        	(EgonEtragoTimeseriesIndividualHeating attribute), [1]


        	(EgonEvCountMvGridDistrict attribute)


        	(EgonEvMvGridDistrict attribute)


        	(EgonHomeBatteries attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvSubstationVoronoi attribute)


        	(EgonHvmvTransferBuses attribute)


        	(EgonMapZensusMvgdBuildings attribute)


        	(EgonPfHvBus attribute)


        	(EgonPfHvBusTimeseries attribute)


        	(EgonPfHvGasVoronoi attribute)


        	(EgonPowerPlantPvRoofBuilding attribute)


        	(EgonPowerPlants attribute)


        	(EgonStorages attribute)


        	(MapMvgriddistrictsVg250 attribute)


        	(MapZensusGridDistricts attribute)


        	(MvGridDistricts attribute)


        	(MvGridDistrictsDissolved attribute)


        	(VoronoiMunicipalityCuts attribute)


        	(VoronoiMunicipalityCutsAssigned attribute)


        	(VoronoiMunicipalityCutsBase attribute)


      


      	buses() (in module egon.data.datasets.electrical_neighbours)

      
        	(in module egon.data.datasets.heat_etrago)
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      	c2035_capacity (NEP2021ConvPowerPlants attribute)


      	c2035_chp (NEP2021ConvPowerPlants attribute)


      	cables (EgonPfHvLine attribute)


      	calc_building_demand_profile_share() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	calc_capacities() (in module egon.data.datasets.electrical_neighbours)

      
        	(in module egon.data.datasets.gas_neighbours.eGon2035)


      


      	calc_capacity_per_year() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	calc_census_cell_share() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	calc_ch4_storage_capacities() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	calc_cts_building_profiles() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	calc_evs_per_grid_district() (in module egon.data.datasets.emobility.motorized_individual_travel.ev_allocation)


      	calc_evs_per_municipality() (in module egon.data.datasets.emobility.motorized_individual_travel.ev_allocation)


      	calc_evs_per_reg_district() (in module egon.data.datasets.emobility.motorized_individual_travel.ev_allocation)


      	calc_geothermal_costs() (in module egon.data.datasets.heat_supply.geothermal)


      	calc_geothermal_potentials() (in module egon.data.datasets.heat_supply.geothermal)


      	calc_global_ch4_demand() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	calc_global_power_to_h2_demand() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	calc_ind_site_timeseries() (in module egon.data.datasets.DSM_cts_ind)


      	calc_load_curve() (in module egon.data.datasets.electricity_demand.temporal)


      	calc_load_curves_cts() (in module egon.data.datasets.electricity_demand.temporal)


      	calc_load_curves_ind_osm() (in module egon.data.datasets.industry.temporal)


      	calc_load_curves_ind_sites() (in module egon.data.datasets.industry.temporal)


      	calc_residential_heat_profiles_per_mvgd() (in module egon.data.datasets.heat_supply.individual_heating)


      	calc_usable_geothermal_potential() (in module egon.data.datasets.heat_supply.geothermal)


      	calculate_and_map_saltcavern_storage_potential() (in module egon.data.datasets.hydrogen_etrago.storage)


      	calculate_building_load_factor() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	calculate_ch4_grid_capacities() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	calculate_crossbordering_gas_grid_capacities_eGon100RE() (in module egon.data.datasets.gas_neighbours.eGon100RE)


      	Calculate_dlr (class in egon.data.datasets.calculate_dlr)


      	calculate_max_pv_cap_per_building() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	calculate_ocgt_capacities() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	calculate_potentials() (in module egon.data.datasets.DSM_cts_ind)


      	calculate_total_hydrogen_consumption() (in module egon.data.datasets.emobility.heavy_duty_transport.h2_demand_distribution)


      	CalledProcessError


      	calulate_peak_load() (in module egon.data.datasets.heat_demand_timeseries)


      	cap_per_bus_id() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	cap_share_per_cap_range() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	capacity (EgonDistrictHeatingSupply attribute)

      
        	(EgonHomeBatteries attribute)


        	(EgonIndividualHeatingSupply attribute)


        	(EgonPowerPlantPvRoofBuilding attribute)


        	(EgonScenarioCapacities attribute)


        	(NEP2021ConvPowerPlants attribute)


      


      	capacity_per_district_heating_category() (in module egon.data.datasets.heat_supply.district_heating)


      	capacity_production (SchmidtIndustrialSites attribute)


      	capital_cost (EgonPfHvGenerator attribute)

      
        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStore attribute)


        	(EgonPfHvTransformer attribute)


      


      	carrier (EgonChp attribute)

      
        	(EgonDistrictHeatingSupply attribute)


        	(EgonEtragoTimeseriesIndividualHeating attribute)


        	(EgonIndividualHeatingSupply attribute)


        	(EgonMaStRConventinalWithoutChp attribute)


        	(EgonPfHvBus attribute)


        	(EgonPfHvGasVoronoi attribute)


        	(EgonPfHvGenerator attribute)


        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvLoad attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStore attribute)


        	(EgonPowerPlants attribute)


        	(EgonRenewableFeedIn attribute)


        	(EgonScenarioCapacities attribute)


        	(EgonStorages attribute)


        	(NEP2021ConvPowerPlants attribute)


      


      	carrier_nep (NEP2021ConvPowerPlants attribute)


      	cascade_heat_supply() (in module egon.data.datasets.heat_supply.district_heating)


      	cascade_heat_supply_indiv() (in module egon.data.datasets.heat_supply.individual_heating)


      	cascade_per_technology() (in module egon.data.datasets.heat_supply.district_heating)

      
        	(in module egon.data.datasets.heat_supply.individual_heating)


      


      	catch_missing_buidings() (in module egon.data.datasets.heat_supply.individual_heating)


      	category (EgonDistrictHeatingSupply attribute)

      
        	(EgonIndividualHeatingSupply attribute)


      


      	cell_count (Vg250GemPopulation attribute)


      	cell_id (EgonDestatisZensusHouseholdPerHaRefined attribute)

      
        	(HouseholdElectricityProfilesInCensusCells attribute)


        	(HouseholdElectricityProfilesOfBuildings attribute)


        	(OsmBuildingsSynthetic attribute)


      


      	cell_profile_ids (HouseholdElectricityProfilesInCensusCells attribute)


      	cells_with_cts_demand_only() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	census_cells_melt() (in module egon.data.datasets.loadarea)


      	central_buses_egon100() (in module egon.data.datasets.electrical_neighbours)


      	central_transformer() (in module egon.data.datasets.electrical_neighbours)


      	ch4_bus_id (EgonChp attribute)


      	ch4_nodes_number_G() (in module egon.data.datasets.gas_grid)


      	CH4Production (class in egon.data.datasets.ch4_prod)


      	CH4Storages (class in egon.data.datasets.ch4_storages)


      	characteristics_code (EgonDestatisZensusHouseholdPerHaRefined attribute)


      	charging_capacity_battery (EgonEvTrip attribute)


      	charging_capacity_grid (EgonEvTrip attribute)


      	charging_capacity_nominal (EgonEvTrip attribute)


      	charging_demand (EgonEvTrip attribute)


      	check_carriers() (in module egon.data.datasets.etrago_setup)


      	check_db_unique_violation() (in module egon.data.db)


      	check_version() (Dataset method)


  

  	
      	choose_transformer() (in module egon.data.datasets.electrical_neighbours)


      	Chp (class in egon.data.datasets.chp)


      	chp (NEP2021ConvPowerPlants attribute)


      	ChpEtrago (class in egon.data.datasets.chp_etrago)


      	city (EgonMaStRConventinalWithoutChp attribute)

      
        	(HotmapsIndustrialSites attribute)


        	(NEP2021ConvPowerPlants attribute)


      


      	citycode (HotmapsIndustrialSites attribute)


      	clean() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	clean_database() (in module egon.data.datasets.pypsaeursec)


      	clean_mastr_data() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	cleaning_and_preperation() (in module egon.data.datasets.vg250)


      	climate_zone (EgonDailyHeatDemandPerClimateZone attribute)

      
        	(EgonMapZensusClimateZones attribute)


      


      	clone_and_install() (in module egon.data.datasets.demandregio.install_disaggregator)


      	co2_emissions (EgonPfHvCarrier attribute)


      	color (EgonPfHvCarrier attribute)


      	commentary (EgonPfHvCarrier attribute)


      	commissioned (NEP2021ConvPowerPlants attribute)


      	committable (EgonPfHvGenerator attribute)


      	companyname (HotmapsIndustrialSites attribute)

      
        	(IndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


      


      	component (EgonScenarioCapacities attribute)


      	consistency() (in module egon.data.datasets.fill_etrago_gen)


      	consumption (EgonEvTrip attribute)


      	context() (in module egon.data.metadata)


      	control (EgonPfHvGenerator attribute)

      
        	(EgonPfHvStorage attribute)


      


      	copy_and_modify_buses() (in module egon.data.datasets.etrago_helpers)


      	copy_and_modify_links() (in module egon.data.datasets.etrago_helpers)


      	copy_and_modify_stores() (in module egon.data.datasets.etrago_helpers)


      	count_hole (HvmvSubstPerMunicipality attribute)

      
        	(Vg250GemClean attribute)


      


      	country (EgonPfHvBus attribute)

      
        	(HotmapsIndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


      


      	cp_id (EgonEmobChargingInfrastructure attribute)


      	create() (in module egon.data.datasets.heat_demand_timeseries.idp_pool)


      	create_buildings_filtered_all_zensus_mapping() (in module egon.data.datasets.osm_buildings_streets)


      	create_buildings_filtered_zensus_mapping() (in module egon.data.datasets.osm_buildings_streets)


      	create_buildings_residential_zensus_mapping() (in module egon.data.datasets.osm_buildings_streets)


      	create_buildings_temp_tables() (in module egon.data.datasets.osm_buildings_streets)


      	create_combined_zensus_table() (in module egon.data.datasets.zensus)


      	create_district_heating_profile() (in module egon.data.datasets.heat_demand_timeseries)


      	create_district_heating_profile_python_like() (in module egon.data.datasets.heat_demand_timeseries)


      	create_dsm_components() (in module egon.data.datasets.DSM_cts_ind)


      	create_gas_voronoi_table() (in module egon.data.datasets.gas_areas)


      	create_individual_heat_per_mv_grid() (in module egon.data.datasets.heat_demand_timeseries)


      	create_individual_heating_peak_loads() (in module egon.data.datasets.heat_demand_timeseries)


      	create_individual_heating_profile_python_like() (in module egon.data.datasets.heat_demand_timeseries)


      	create_landuse_table() (in module egon.data.datasets.loadarea)


      	create_missing_zensus_data() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	create_scenario_table() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	create_sql_functions() (in module egon.data.datasets.substation)


      	create_synthetic_buildings() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	create_table() (in module egon.data.datasets.DSM_cts_ind)

      
        	(in module egon.data.datasets.electricity_demand.temporal)


        	(in module egon.data.datasets.scenario_capacities)


        	(in module egon.data.datasets.scenario_parameters)


        	(in module egon.data.datasets.storages.home_batteries)


      


      	create_tables() (in module egon.data.datasets.chp)

      
        	(in module egon.data.datasets.demandregio)


        	(in module egon.data.datasets.district_heating_areas)


        	(in module egon.data.datasets.electricity_demand)


        	(in module egon.data.datasets.emobility.heavy_duty_transport)


        	(in module egon.data.datasets.emobility.motorized_individual_travel)


        	(in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure)


        	(in module egon.data.datasets.era5)


        	(in module egon.data.datasets.etrago_setup)


        	(in module egon.data.datasets.heat_supply)


        	(in module egon.data.datasets.industrial_sites)


        	(in module egon.data.datasets.industry)


        	(in module egon.data.datasets.osmtgmod.substation)


        	(in module egon.data.datasets.power_plants)


        	(in module egon.data.datasets.re_potential_areas)


        	(in module egon.data.datasets.society_prognosis)


        	(in module egon.data.datasets.storages)


        	(in module egon.data.datasets.substation)


        	(in module egon.data.datasets.substation_voronoi)


        	(in module egon.data.datasets.vg250_mv_grid_districts)


      


      	create_timeseries_for_building() (in module egon.data.datasets.heat_demand_timeseries)


      	create_voronoi() (in module egon.data.datasets.gas_areas)


      	create_zensus_misc_tables() (in module egon.data.datasets.zensus)


      	create_zensus_pop_table() (in module egon.data.datasets.zensus)


      	credentials() (in module egon.data.db)


      	cross_border_lines() (in module egon.data.datasets.electrical_neighbours)


      	cts_buildings() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	cts_data_import() (in module egon.data.datasets.DSM_cts_ind)


      	cts_demand_per_aggregation_level() (in module egon.data.datasets.heat_demand_timeseries.service_sector)


      	CTS_demand_scale() (in module egon.data.datasets.heat_demand_timeseries.service_sector)


      	cts_electricity() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	cts_electricity_demand_share() (in module egon.data.datasets.sanity_checks)


      	cts_heat() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	cts_heat_demand_share() (in module egon.data.datasets.sanity_checks)


      	CtsBuildings (class in egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	CtsDemandBuildings (class in egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	CtsElectricityDemand (class in egon.data.datasets.electricity_demand)


      	cutout_heat_demand_germany() (in module egon.data.datasets.heat_demand)


      	cyclic_state_of_charge (EgonPfHvStorage attribute)
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      	daily_demand_share (EgonDailyHeatDemandPerClimateZone attribute)


      	daily_demand_shares_per_climate_zone() (in module egon.data.datasets.heat_demand_timeseries.daily)


      	data_export() (in module egon.data.datasets.DSM_cts_ind)


      	data_in_boundaries() (in module egon.data.datasets.demandregio)


      	data_preprocessing() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	DataBundle (class in egon.data.datasets.data_bundle)


      	Dataset (class in egon.data.datasets)


      	datasets() (in module egon.data.config)


      	datasource (HotmapsIndustrialSites attribute)


      	day_of_year (EgonDailyHeatDemandPerClimateZone attribute)


      	dbahn (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


      


      	debkg_id (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	define_DE_crossbording_pipes_geom_eGon100RE() (in module egon.data.datasets.gas_neighbours.eGon100RE)


      	define_gas_buses_abroad() (in module egon.data.datasets.gas_grid)


      	define_gas_nodes_list() (in module egon.data.datasets.gas_grid)


      	define_gas_pipeline_list() (in module egon.data.datasets.gas_grid)


      	define_mv_grid_districts() (in module egon.data.datasets.mv_grid_districts)


      	definition (EgonDemandRegioWz attribute)


      	delete_dsm_entries() (in module egon.data.datasets.DSM_cts_ind)


      	delete_heat_peak_loads_100RE() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_heat_peak_loads_2035() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_hp_capacity() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_hp_capacity_100RE() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_hp_capacity_2035() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_model_data_from_db() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	delete_mvgd_ts() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_mvgd_ts_100RE() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_mvgd_ts_2035() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_old_entries() (in module egon.data.datasets.emobility.heavy_duty_transport.create_h2_buses)

      
        	(in module egon.data.datasets.industrial_gas_demand)


      


      	delete_previuos_gen() (in module egon.data.datasets.fill_etrago_gen)


      	delete_pypsa_eur_sec_csv_file() (in module egon.data.datasets.heat_supply.individual_heating)


      	delete_synthetic_cts_buildings() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	demand (DemandCurvesOsmIndustryIndividual attribute)

      
        	(DemandCurvesSitesIndustryIndividual attribute)


        	(EgonDemandRegioCtsInd attribute)


        	(EgonDemandRegioHH attribute)


        	(EgonDemandRegioOsmIndElectricity attribute)


        	(EgonDemandRegioSitesIndElectricity attribute)


        	(EgonDemandRegioZensusElectricity attribute)


        	(EgonPetaHeat attribute)


      


      	DemandCurvesOsmIndustry (class in egon.data.datasets.industry)


      	DemandCurvesOsmIndustryIndividual (class in egon.data.datasets.industry)


      	DemandCurvesSitesIndustry (class in egon.data.datasets.industry)


      	DemandCurvesSitesIndustryIndividual (class in egon.data.datasets.industry)


      	DemandRegio (class in egon.data.datasets.demandregio)


      	demands_per_bus() (in module egon.data.datasets.electricity_demand_etrago)


      	demarcation() (in module egon.data.datasets.district_heating_areas)


      	dependencies (Dataset attribute)

      
        	(Model attribute)


      


      	desaggregate_hp_capacity() (in module egon.data.datasets.heat_supply.individual_heating)


      	desaggregate_pv() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	desaggregate_pv_in_mv_grid() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	description (EgonScenario attribute)


      	DestatisZensusPopulationPerHa (class in egon.data.datasets.zensus_vg250)


      	DestatisZensusPopulationPerHaInsideGermany (class in egon.data.datasets.zensus_vg250)


  

  	
      	determine_buildings_with_hp_in_mv_grid() (in module egon.data.datasets.heat_supply.individual_heating)


      	determine_end_of_life_gens() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	determine_hp_cap_buildings_eGon100RE() (in module egon.data.datasets.heat_supply.individual_heating)


      	determine_hp_cap_buildings_eGon100RE_per_mvgd() (in module egon.data.datasets.heat_supply.individual_heating)


      	determine_hp_cap_buildings_eGon2035_per_mvgd() (in module egon.data.datasets.heat_supply.individual_heating)


      	determine_hp_cap_peak_load_mvgd_ts_2035() (in module egon.data.datasets.heat_supply.individual_heating)
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      	extendable_batteries() (in module egon.data.datasets.storages_etrago)


      	extendable_batteries_per_scenario() (in module egon.data.datasets.storages_etrago)


      	extension_BB() (in module egon.data.datasets.chp)


      	extension_BE() (in module egon.data.datasets.chp)


      	extension_BW() (in module egon.data.datasets.chp)


      	extension_BY() (in module egon.data.datasets.chp)


      	extension_district_heating() (in module egon.data.datasets.chp.small_chp)


      	extension_HB() (in module egon.data.datasets.chp)


      	extension_HE() (in module egon.data.datasets.chp)


      	extension_HH() (in module egon.data.datasets.chp)


      	extension_industrial() (in module egon.data.datasets.chp.small_chp)


      	extension_MV() (in module egon.data.datasets.chp)


      	extension_NS() (in module egon.data.datasets.chp)


      	extension_NW() (in module egon.data.datasets.chp)


      	extension_per_federal_state() (in module egon.data.datasets.chp.small_chp)


      	extension_RP() (in module egon.data.datasets.chp)


      	extension_SH() (in module egon.data.datasets.chp)


      	extension_SL() (in module egon.data.datasets.chp)


      	extension_SN() (in module egon.data.datasets.chp)


      	extension_ST() (in module egon.data.datasets.chp)


      	extension_TH() (in module egon.data.datasets.chp)


      	extension_to_areas() (in module egon.data.datasets.chp.small_chp)


      	extract() (in module egon.data.datasets.osmtgmod.substation)


      	extract_amenities() (in module egon.data.datasets.osm_buildings_streets)


      	extract_buildings_filtered_amenities() (in module egon.data.datasets.osm_buildings_streets)


      	extract_buildings_w_amenities() (in module egon.data.datasets.osm_buildings_streets)


      	extract_buildings_wo_amenities() (in module egon.data.datasets.osm_buildings_streets)


      	extract_trip_file() (in module egon.data.datasets.emobility.motorized_individual_travel)


      	extract_ways() (in module egon.data.datasets.osm_buildings_streets)


  





F


  	
      	factor_2035 (HouseholdElectricityProfilesInCensusCells attribute)


      	factor_2050 (HouseholdElectricityProfilesInCensusCells attribute)


      	federal_state (EgonMaStRConventinalWithoutChp attribute)

      
        	(NEP2021ConvPowerPlants attribute)


      


      	federal_state_data() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	federal_states_per_weather_cell() (in module egon.data.datasets.renewable_feedin)


      	feedin (EgonRenewableFeedIn attribute)


      	feedin_per_turbine() (in module egon.data.datasets.renewable_feedin)


      	filename (Vg250 attribute)


      	fill_etrago_gen_table() (in module egon.data.datasets.fill_etrago_gen)


      	fill_etrago_gen_time_table() (in module egon.data.datasets.fill_etrago_gen)


      	fill_etrago_generators() (in module egon.data.datasets.fill_etrago_gen)


      	filter_buildings() (in module egon.data.datasets.osm_buildings_streets)


      	filter_buildings_residential() (in module egon.data.datasets.osm_buildings_streets)


      	filter_mastr_geometry() (in module egon.data.datasets.power_plants)


      	filter_zensus_misc() (in module egon.data.datasets.zensus)


      	filter_zensus_population() (in module egon.data.datasets.zensus)


  

  	
      	finalize_bus_insertion() (in module egon.data.datasets.etrago_helpers)


      	find_bus_id() (in module egon.data.datasets.power_plants.assign_weather_data)


      	find_weather_id() (in module egon.data.datasets.power_plants.assign_weather_data)


      	fix_missing_ags_municipality_regiostar() (in module egon.data.datasets.emobility.motorized_individual_travel.ev_allocation)


      	fix_subnetworks() (in module egon.data.datasets.fix_ehv_subnetworks)


      	FixEhvSubnetworks (class in egon.data.datasets.fix_ehv_subnetworks)


      	fk_s3 (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	foreign_dc_lines() (in module egon.data.datasets.electrical_neighbours)


      	frame_to_numeric() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	frequency (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


      


      	fuel_demand (HotmapsIndustrialSites attribute)


      	fueldemand_tj (SeenergiesIndustrialSites attribute)


      	future_heat_demand_germany() (in module egon.data.datasets.heat_demand)


  





G


  	
      	g (EgonPfHvLine attribute)

      
        	(EgonPfHvTransformer attribute)


      


      	gas() (in module egon.data.datasets.scenario_parameters.parameters)


      	gas_parameters (EgonScenario attribute)


      	GasAreaseGon100RE (class in egon.data.datasets.gas_areas)


      	GasAreaseGon2035 (class in egon.data.datasets.gas_areas)


      	GasNeighbours (class in egon.data.datasets.gas_neighbours)


      	GasNodesAndPipes (class in egon.data.datasets.gas_grid)


      	gen (HvmvSubstPerMunicipality attribute)

      
        	(Vg250Gem attribute)


        	(Vg250GemClean attribute)


        	(Vg250GemPopulation attribute)


        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	generate_load_time_series() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	generate_map() (in module egon.data.datasets.power_plants.wind_farms)


      	generate_mapping_table() (in module egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	generate_model_data_bunch() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	generate_model_data_eGon100RE_remaining() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	generate_model_data_eGon2035_remaining() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	generate_model_data_grid_district() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	generate_resource_fields_from_db_table() (in module egon.data.metadata)


      	generate_resource_fields_from_sqla_model() (in module egon.data.metadata)


      	generate_static_params() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	generate_synthetic_buildings() (in module egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	generate_wind_farms() (in module egon.data.datasets.power_plants.wind_farms)


      	generator_id (EgonPfHvGenerator attribute)

      
        	(EgonPfHvGeneratorTimeseries attribute)


      


      	gens_id (EgonPowerPlantPvRoofBuilding attribute)


      	geo_intersect() (in module egon.data.datasets.emobility.heavy_duty_transport.h2_demand_distribution)


      	geom (DestatisZensusPopulationPerHa attribute)

      
        	(DestatisZensusPopulationPerHaInsideGermany attribute)


        	(EgonChp attribute)


        	(EgonEhvSubstationVoronoi attribute)


        	(EgonEra5Cells attribute)


        	(EgonHvmvSubstationVoronoi attribute)


        	(EgonPfHvBus attribute)


        	(EgonPfHvGasVoronoi attribute)


        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvTransformer attribute)


        	(EgonPowerPlants attribute)


        	(EgonRePotentialAreaPvAgriculture attribute)


        	(EgonRePotentialAreaPvRoadRailway attribute)


        	(EgonRePotentialAreaWind attribute)


        	(EgonStorages attribute)


        	(HotmapsIndustrialSites attribute)


        	(IndustrialSites attribute)


        	(MvGridDistricts attribute)


        	(MvGridDistrictsDissolved attribute)


        	(OsmBuildingsFiltered attribute)


        	(OsmPolygonUrban attribute)


        	(SchmidtIndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


        	(Vg250GemPopulation attribute)


        	(VoronoiMunicipalityCuts attribute)


        	(VoronoiMunicipalityCutsAssigned attribute)


        	(VoronoiMunicipalityCutsBase attribute)


      


      	geom_building (CtsBuildings attribute)

      
        	(OsmBuildingsSynthetic attribute)


      


      	geom_point (DestatisZensusPopulationPerHa attribute)

      
        	(DestatisZensusPopulationPerHaInsideGermany attribute)


        	(EgonEra5Cells attribute)


        	(OsmBuildingsFiltered attribute)


        	(OsmBuildingsSynthetic attribute)


      


      	geom_polygon (EgonDistrictHeatingAreas attribute)


      	geom_sub (VoronoiMunicipalityCuts attribute)

      
        	(VoronoiMunicipalityCutsAssigned attribute)


        	(VoronoiMunicipalityCutsBase attribute)


      


  

  	
      	geometry (EgonDistrictHeatingSupply attribute)

      
        	(EgonEmobChargingInfrastructure attribute)


        	(EgonHeavyDutyTransportVoronoi attribute)


        	(EgonIndividualHeatingSupply attribute)


        	(EgonMaStRConventinalWithoutChp attribute)


        	(HvmvSubstPerMunicipality attribute)


        	(Vg250Gem attribute)


        	(Vg250GemClean attribute)


        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	get_annual_household_el_demand_cells() (in module egon.data.datasets.electricity_demand)


      	get_building_peak_loads() (in module egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	get_buildings_with_decentral_heat_demand_in_mv_grid() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_cbat_pbat_ratio() (in module egon.data.datasets.storages.home_batteries)


      	get_cell_demand_metadata_from_db() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_cell_demand_profile_ids() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_census_households_grid() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_census_households_nuts1_raw() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_cross_border_buses() (in module egon.data.datasets.electrical_neighbours)


      	get_cross_border_lines() (in module egon.data.datasets.electrical_neighbours)


      	get_cts_buildings_with_decentral_heat_demand_in_mv_grid() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_cts_electricity_peak_load() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	get_cts_heat_peak_load() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	get_daily_demand_share() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_daily_profiles() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_data() (in module egon.data.datasets.emobility.heavy_duty_transport.data_io)

      
        	(in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.infrastructure_allocation)


      


      	get_foreign_bus_id() (in module egon.data.datasets.electrical_neighbours)


      	get_foreign_gas_bus_id() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	get_heat_peak_demand_per_building() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_hh_profiles_from_db() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_houseprofiles_in_census_cells() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_iee_hh_demand_profiles_raw() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_load_timeseries() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_location() (in module egon.data.datasets.storages.pumped_hydro)


      	get_map_buses() (in module egon.data.datasets.electrical_neighbours)


      	get_peta_demand() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)

      
        	(in module egon.data.datasets.heat_supply.individual_heating)


      


      	get_probability_for_property() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	get_residential_buildings_with_decentral_heat_demand_in_mv_grid() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_residential_heat_profile_ids() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_scaled_profiles_from_db() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	get_sector_parameters() (in module egon.data.datasets.scenario_parameters)


      	get_temperature_interval() (IdpProfiles method)


      	get_total_heat_pump_capacity_of_mv_grid() (in module egon.data.datasets.heat_supply.individual_heating)


      	get_tracbev_data() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure)


      	get_voronoi_geodataframe() (in module egon.data.datasets.generate_voronoi)


      	get_zensus_cells_with_decentral_heat_demand_in_mv_grid() (in module egon.data.datasets.heat_supply.individual_heating)


      	gf (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	global_parameters (EgonScenario attribute)


      	global_settings() (in module egon.data.datasets.scenario_parameters.parameters)


      	globalid (SeenergiesIndustrialSites attribute)


      	graph (Tasks attribute)


      	grid() (in module egon.data.datasets.electrical_neighbours)

      
        	(in module egon.data.datasets.gas_neighbours.eGon2035)


      


      	grid_districts() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	grid_id (DestatisZensusPopulationPerHa attribute)

      
        	(DestatisZensusPopulationPerHaInsideGermany attribute)


        	(EgonDestatisZensusHouseholdPerHaRefined attribute)


        	(HouseholdElectricityProfilesInCensusCells attribute)


      


      	grid_timeseries (EgonEvMetadata attribute)


      	grid_timeseries_by_usecase (EgonEvMetadata attribute)


      	group_power_plants() (in module egon.data.datasets.fill_etrago_gen)


  





H


  	
      	H2_CH4_mix_energy_fractions() (in module egon.data.datasets.hydrogen_etrago.h2_to_ch4)


      	h_value() (in module egon.data.datasets.heat_demand_timeseries.daily)


      	heat (EgonMapZensusMvgdBuildings attribute)


      	heat() (in module egon.data.datasets.scenario_parameters.parameters)


      	heat_demand_to_db_table() (in module egon.data.datasets.heat_demand)


      	heat_parameters (EgonScenario attribute)


      	heat_pump_cop() (in module egon.data.datasets.renewable_feedin)


      	HeatDemandEurope (class in egon.data.datasets.heat_demand_europe)


      	HeatDemandImport (class in egon.data.datasets.heat_demand)


      	HeatEtrago (class in egon.data.datasets.heat_etrago)


      	HeatPumps2035 (class in egon.data.datasets.heat_supply.individual_heating)


      	HeatPumps2050 (class in egon.data.datasets.heat_supply.individual_heating)


      	HeatPumpsPypsaEurSec (class in egon.data.datasets.heat_supply.individual_heating)


      	HeatSupply (class in egon.data.datasets.heat_supply)


      	HeatTimeSeries (class in egon.data.datasets.heat_demand_timeseries)


      	HeavyDutyTransport (class in egon.data.datasets.emobility.heavy_duty_transport)


      	hh_10types (EgonDestatisZensusHouseholdPerHaRefined attribute)


      	hh_5types (EgonDestatisZensusHouseholdPerHaRefined attribute)


      	hh_size (EgonDemandRegioHH attribute)

      
        	(EgonDemandRegioHouseholds attribute)


      


      	hh_type (EgonDestatisZensusHouseholdPerHaRefined attribute)


      	home() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.use_cases)


  

  	
      	home_batteries_per_scenario() (in module egon.data.datasets.storages)


      	home_charge_spots() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.use_cases)


      	hotmaps_to_postgres() (in module egon.data.datasets.industrial_sites)


      	HotmapsIndustrialSites (class in egon.data.datasets.industrial_sites)


      	household_prognosis_per_year() (in module egon.data.datasets.society_prognosis)


      	HouseholdDemands (class in egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	HouseholdElectricityDemand (class in egon.data.datasets.electricity_demand)


      	HouseholdElectricityProfilesInCensusCells (class in egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	HouseholdElectricityProfilesOfBuildings (class in egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	households (EgonDemandRegioHouseholds attribute)

      
        	(EgonHouseholdPrognosis attribute)


      


      	houseprofiles_in_census_cells() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	hp_capacity (EgonHpCapacityBuildings attribute)


      	hpc() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.use_cases)


      	hts_to_etrago() (in module egon.data.datasets.heat_etrago.hts_etrago)


      	HtsEtragoTable (class in egon.data.datasets.heat_etrago.hts_etrago)


      	HvmvSubstPerMunicipality (class in egon.data.datasets.mv_grid_districts)


      	hydrogen_consumption (EgonHeavyDutyTransportVoronoi attribute)


      	HydrogenBusEtrago (class in egon.data.datasets.hydrogen_etrago)


      	HydrogenGridEtrago (class in egon.data.datasets.hydrogen_etrago)


      	HydrogenMethaneLinkEtrago (class in egon.data.datasets.hydrogen_etrago)


      	HydrogenPowerLinkEtrago (class in egon.data.datasets.hydrogen_etrago)


      	HydrogenStoreEtrago (class in egon.data.datasets.hydrogen_etrago)


  





I


  	
      	ibz (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	id (CtsBuildings attribute)

      
        	(DestatisZensusPopulationPerHa attribute)


        	(DestatisZensusPopulationPerHaInsideGermany attribute)


        	(EgonChp attribute)


        	(EgonDemandRegioOsmIndElectricity attribute)


        	(EgonDestatisZensusHouseholdPerHaRefined attribute)


        	(EgonDistrictHeatingAreas attribute)


        	(EgonEhvSubstationVoronoi attribute)


        	(EgonEvMvGridDistrict attribute)


        	(EgonHvmvSubstationVoronoi attribute)


        	(EgonMaStRConventinalWithoutChp attribute)


        	(EgonPetaHeat attribute)


        	(EgonPowerPlants attribute)


        	(EgonRePotentialAreaPvAgriculture attribute)


        	(EgonRePotentialAreaPvRoadRailway attribute)


        	(EgonRePotentialAreaWind attribute)


        	(EgonStorages attribute)


        	(HouseholdElectricityProfilesOfBuildings attribute)


        	(HvmvSubstPerMunicipality attribute)


        	(IeeHouseholdLoadProfiles attribute)


        	(IndustrialSites attribute)


        	(MapZensusDistrictHeatingAreas attribute)


        	(Model attribute)


        	(MvGridDistrictsDissolved attribute)


        	(OsmBuildingsFiltered attribute)


        	(OsmBuildingsSynthetic attribute)


        	(OsmPolygonUrban attribute)


        	(SchmidtIndustrialSites attribute)


        	(Vg250Gem attribute)


        	(Vg250GemClean attribute)


        	(Vg250GemPopulation attribute)


        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


        	(VoronoiMunicipalityCuts attribute)


        	(VoronoiMunicipalityCutsAssigned attribute)


      


      	identify_bus() (in module egon.data.datasets.industry.temporal)


      	identify_voltage_level() (in module egon.data.datasets.industry.temporal)


      	idp_pool_generator() (in module egon.data.datasets.heat_demand_timeseries.idp_pool)


      	IdpProfiles (class in egon.data.datasets.heat_demand_timeseries.daily)


      	IeeHouseholdLoadProfiles (class in egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	import_ch4_demandTS() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	import_ch4_grid_capacity() (in module egon.data.datasets.ch4_storages)


      	import_cutout() (in module egon.data.datasets.era5)


      	import_gas_generators() (in module egon.data.datasets.ch4_prod)


      	import_installed_ch4_storages() (in module egon.data.datasets.ch4_storages)


      	import_mastr() (in module egon.data.datasets.power_plants.mastr)


      	import_osm_data() (in module egon.data.datasets.osmtgmod)


      	impute_missing_hh_in_populated_cells() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	ind_osm_data_import() (in module egon.data.datasets.DSM_cts_ind)


      	ind_osm_data_import_individual() (in module egon.data.datasets.DSM_cts_ind)


      	ind_sites_data_import() (in module egon.data.datasets.DSM_cts_ind)


      	ind_sites_vent_data_import() (in module egon.data.datasets.DSM_cts_ind)


      	ind_sites_vent_data_import_individual() (in module egon.data.datasets.DSM_cts_ind)


      	index (EgonDistrictHeatingSupply attribute)

      
        	(EgonHomeBatteries attribute)


        	(EgonIndividualHeatingSupply attribute)


        	(EgonPowerPlantPvRoofBuilding attribute)


        	(EgonScenarioCapacities attribute)


        	(NEP2021ConvPowerPlants attribute)


      


      	individual_heating() (in module egon.data.datasets.heat_supply)


      	individual_heating_per_mv_grid() (in module egon.data.datasets.heat_demand_timeseries)


      	individual_heating_per_mv_grid_100() (in module egon.data.datasets.heat_demand_timeseries)


      	individual_heating_per_mv_grid_2035() (in module egon.data.datasets.heat_demand_timeseries)


      	individual_heating_per_mv_grid_tables() (in module egon.data.datasets.heat_demand_timeseries)


      	industrial_demand_distr() (in module egon.data.datasets.industry)


      	industrial_sites_id (EgonDemandRegioSitesIndElectricity attribute)

      
        	(EgonDemandregioSitesIndElectricityDsmTimeseries attribute)


      


      	IndustrialDemandCurves (class in egon.data.datasets.industry)


      	IndustrialGasDemand (class in egon.data.datasets.industrial_gas_demand)


      	IndustrialGasDemandeGon100RE (class in egon.data.datasets.industrial_gas_demand)


      	IndustrialGasDemandeGon2035 (class in egon.data.datasets.industrial_gas_demand)


      	IndustrialSites (class in egon.data.datasets.industrial_sites)


      	infer_voltage_level() (in module egon.data.datasets.power_plants.mastr)

      
        	(in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      


      	inflow (EgonPfHvStorage attribute)

      
        	(EgonPfHvStorageTimeseries attribute)


      


      	inhabitants_to_households() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


  

  	
      	initialise_bus_insertion() (in module egon.data.datasets.etrago_helpers)


      	insert() (in module egon.data.datasets.chp_etrago)

      
        	(in module egon.data.datasets.power_plants.pv_ground_mounted)


        	(in module egon.data.datasets.power_plants.wind_farms)


        	(in module egon.data.datasets.power_plants.wind_offshore)


      


      	insert_biomass_chp() (in module egon.data.datasets.chp)


      	insert_biomass_plants() (in module egon.data.datasets.power_plants)


      	insert_buses() (in module egon.data.datasets.heat_etrago)


      	insert_capacities_per_federal_state_nep() (in module egon.data.datasets.scenario_capacities)


      	insert_carriers() (in module egon.data.datasets.etrago_setup)


      	insert_central_direct_heat() (in module egon.data.datasets.heat_etrago)


      	insert_central_gas_boilers() (in module egon.data.datasets.heat_etrago)


      	insert_central_power_to_heat() (in module egon.data.datasets.heat_etrago.power_to_heat)


      	insert_ch4_demand() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	insert_CH4_nodes_list() (in module egon.data.datasets.gas_grid)


      	insert_ch4_storages() (in module egon.data.datasets.ch4_storages)


      	insert_ch4_stores() (in module egon.data.datasets.ch4_storages)


      	insert_chp_egon100re() (in module egon.data.datasets.chp)


      	insert_chp_egon2035() (in module egon.data.datasets.chp)


      	insert_cts_ind() (in module egon.data.datasets.demandregio)


      	insert_cts_ind_demands() (in module egon.data.datasets.demandregio)


      	insert_cts_ind_wz_definitions() (in module egon.data.datasets.demandregio)


      	insert_cts_load() (in module egon.data.datasets.electricity_demand.temporal)


      	insert_data() (in module egon.data.datasets.re_potential_areas)


      	insert_data_nep() (in module egon.data.datasets.scenario_capacities)


      	insert_egon100re() (in module egon.data.datasets.chp_etrago)


      	insert_feedin() (in module egon.data.datasets.renewable_feedin)


      	insert_gas_buses_abroad() (in module egon.data.datasets.gas_grid)


      	insert_gas_data() (in module egon.data.datasets.gas_grid)


      	insert_gas_data_eGon100RE() (in module egon.data.datasets.gas_grid)


      	insert_gas_grid_capacities() (in module egon.data.datasets.gas_neighbours.gas_abroad)


      	insert_gas_neigbours_eGon100RE() (in module egon.data.datasets.gas_neighbours.eGon100RE)


      	insert_gas_pipeline_list() (in module egon.data.datasets.gas_grid)


      	insert_generators() (in module egon.data.datasets.electrical_neighbours)

      
        	(in module egon.data.datasets.gas_neighbours.eGon2035)


      


      	insert_H2_buses_from_CH4_grid() (in module egon.data.datasets.hydrogen_etrago.bus)


      	insert_H2_buses_from_saltcavern() (in module egon.data.datasets.hydrogen_etrago.bus)


      	insert_H2_overground_storage() (in module egon.data.datasets.hydrogen_etrago.storage)


      	insert_h2_pipelines() (in module egon.data.datasets.hydrogen_etrago.h2_grid)


      	insert_H2_saltcavern_storage() (in module egon.data.datasets.hydrogen_etrago.storage)


      	insert_H2_storage_eGon100RE() (in module egon.data.datasets.hydrogen_etrago.storage)


      	insert_h2_to_ch4_eGon100RE() (in module egon.data.datasets.hydrogen_etrago.h2_to_ch4)


      	insert_h2_to_ch4_to_h2() (in module egon.data.datasets.hydrogen_etrago.h2_to_ch4)


      	insert_hgv_h2_demand() (in module egon.data.datasets.emobility.heavy_duty_transport.create_h2_buses)


      	insert_hh_demand() (in module egon.data.datasets.demandregio)


      	insert_household_demand() (in module egon.data.datasets.demandregio)


      	insert_hydro_biomass() (in module egon.data.datasets.power_plants)


      	insert_hydro_plants() (in module egon.data.datasets.power_plants)


      	insert_hydrogen_buses() (in module egon.data.datasets.hydrogen_etrago.bus)


      	insert_hydrogen_buses_eGon100RE() (in module egon.data.datasets.hydrogen_etrago.bus)


      	insert_individual_power_to_heat() (in module egon.data.datasets.heat_etrago.power_to_heat)


      	insert_industrial_gas_demand_egon100RE() (in module egon.data.datasets.industrial_gas_demand)


      	insert_industrial_gas_demand_egon2035() (in module egon.data.datasets.industrial_gas_demand)


      	insert_industrial_gas_demand_time_series() (in module egon.data.datasets.industrial_gas_demand)


      	insert_large_chp() (in module egon.data.datasets.chp.match_nep)


      	insert_mastr_chp() (in module egon.data.datasets.chp.small_chp)


      	insert_nep_list_powerplants() (in module egon.data.datasets.scenario_capacities)


      	insert_new_entries() (in module egon.data.datasets.emobility.heavy_duty_transport.create_h2_buses)

      
        	(in module egon.data.datasets.industrial_gas_demand)


      


      	insert_ocgt_abroad() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	insert_open_cycle_gas_turbines() (in module egon.data.datasets.power_etrago.match_ocgt)


      	insert_osm_ind_load() (in module egon.data.datasets.industry.temporal)


      	insert_PHES() (in module egon.data.datasets.storages_etrago)


      	insert_power_to_h2_demand() (in module egon.data.datasets.gas_neighbours.eGon2035)


      	insert_power_to_h2_to_power() (in module egon.data.datasets.hydrogen_etrago.power_to_h2)


      	insert_power_to_h2_to_power_eGon100RE() (in module egon.data.datasets.hydrogen_etrago.power_to_h2)


      	insert_power_to_heat_per_level() (in module egon.data.datasets.heat_etrago.power_to_heat)


      	insert_rural_gas_boilers() (in module egon.data.datasets.heat_etrago)


      	insert_scenarios() (in module egon.data.datasets.scenario_parameters)


      	insert_sites_ind_load() (in module egon.data.datasets.industry.temporal)


      	insert_society_data() (in module egon.data.datasets.demandregio)


      	insert_storage() (in module egon.data.datasets.electrical_neighbours)

      
        	(in module egon.data.datasets.gas_neighbours.eGon2035)


      


      	insert_store() (in module egon.data.datasets.heat_etrago)


      	insert_timeseries_per_wz() (in module egon.data.datasets.demandregio)


      	insert_weather_cells() (in module egon.data.datasets.era5)


      	inside_germany() (in module egon.data.datasets.zensus_vg250)


      	is_hole (HvmvSubstPerMunicipality attribute)

      
        	(Vg250GemClean attribute)


      


      	isfloat() (in module egon.data.datasets.power_plants.mastr)


  





K


  	
      	kg_per_year_to_mega_watt() (in module egon.data.datasets.emobility.heavy_duty_transport.create_h2_buses)


  





L


  	
      	landkreis_number (SchmidtIndustrialSites attribute)


      	lat (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


        	(SchmidtIndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


      


      	length (EgonPfHvLine attribute)

      
        	(EgonPfHvLink attribute)


      


      	level_1_pj (SeenergiesIndustrialSites attribute)


      	level_1_r_pj (SeenergiesIndustrialSites attribute)


      	level_1_r_tj (SeenergiesIndustrialSites attribute)


      	level_1_tj (SeenergiesIndustrialSites attribute)


      	level_2_pj (SeenergiesIndustrialSites attribute)


      	level_2_r_pj (SeenergiesIndustrialSites attribute)


      	level_2_r_tj (SeenergiesIndustrialSites attribute)


      	level_2_tj (SeenergiesIndustrialSites attribute)


      	level_3_pj (SeenergiesIndustrialSites attribute)


      	level_3_r_pj (SeenergiesIndustrialSites attribute)


      	level_3_r_tj (SeenergiesIndustrialSites attribute)


      	level_3_tj (SeenergiesIndustrialSites attribute)


      	license_ccby() (in module egon.data.metadata)


      	license_geonutzv() (in module egon.data.metadata)


      	license_odbl() (in module egon.data.metadata)


      	licenses_datenlizenz_deutschland() (in module egon.data.metadata)


      	lifetime (EgonPfHvGenerator attribute)

      
        	(EgonPfHvLine attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStore attribute)


        	(EgonPfHvTransformer attribute)


      


  

  	
      	line_id (EgonPfHvLine attribute)

      
        	(EgonPfHvLineTimeseries attribute)


      


      	link_geom_from_buses() (in module egon.data.datasets.etrago_setup)


      	link_id (EgonPfHvLink attribute)

      
        	(EgonPfHvLinkTimeseries attribute)


      


      	load_biogas_generators() (in module egon.data.datasets.ch4_prod)


      	load_building_data() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	load_census_data() (in module egon.data.datasets.district_heating_areas)


      	load_curve (EgonDemandRegioTimeseriesCtsInd attribute)


      	load_evs_trips() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	load_grid_district_ids() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


      	load_heat_demands() (in module egon.data.datasets.district_heating_areas)


      	load_id (EgonPfHvLoad attribute)

      
        	(EgonPfHvLoadTimeseries attribute)


      


      	load_in_wh (IeeHouseholdLoadProfiles attribute)


      	load_mastr_data() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	load_NG_generators() (in module egon.data.datasets.ch4_prod)


      	load_tables() (in module egon.data.datasets.fill_etrago_gen)


      	LoadArea (class in egon.data.datasets.loadarea)


      	loadareas_add_demand_cts() (in module egon.data.datasets.loadarea)


      	loadareas_add_demand_hh() (in module egon.data.datasets.loadarea)


      	loadareas_add_demand_ind() (in module egon.data.datasets.loadarea)


      	loadareas_create() (in module egon.data.datasets.loadarea)


      	location (EgonEvTrip attribute)

      
        	(HotmapsIndustrialSites attribute)


      


      	lon (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


        	(SchmidtIndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


      


      	LowFlexScenario (class in egon.data.datasets.low_flex_scenario)


  





M


  	
      	main() (in module egon.data.cli)


      	map_all_used_buildings() (in module egon.data.datasets.electricity_demand_timeseries.mapping)


      	map_buses() (in module egon.data.datasets.hydrogen_etrago.power_to_h2)

      
        	(in module egon.data.datasets.power_etrago.match_ocgt)


      


      	map_carrier() (in module egon.data.datasets.scenario_capacities)


      	map_carriers_tyndp() (in module egon.data.datasets.electrical_neighbours)


      	map_climate_zones_to_zensus() (in module egon.data.datasets.heat_demand_timeseries.daily)


      	map_houseprofiles_to_buildings() (in module egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	map_nuts3() (in module egon.data.datasets.industrial_sites)


      	map_zensus_vg250() (in module egon.data.datasets.zensus_vg250)


      	MapMvgriddistrictsVg250 (class in egon.data.datasets.vg250_mv_grid_districts)


      	mapping() (in module egon.data.datasets.vg250_mv_grid_districts)

      
        	(in module egon.data.datasets.zensus_mv_grid_districts)


      


      	mapping_zensus_weather() (in module egon.data.datasets.renewable_feedin)


      	MapZensusDistrictHeatingAreas (class in egon.data.datasets.district_heating_areas)


      	MapZensusGridDistricts (class in egon.data.datasets.zensus_mv_grid_districts)


      	MapZensusVg250 (class in egon.data.datasets.zensus_vg250)


      	MapZensusWeatherCell (class in egon.data.datasets.renewable_feedin)


      	marginal_cost (EgonPfHvGenerator attribute)

      
        	(EgonPfHvGeneratorTimeseries attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvLinkTimeseries attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStorageTimeseries attribute)


        	(EgonPfHvStore attribute)


        	(EgonPfHvStoreTimeseries attribute)


      


      	mastr_data() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	match_existing_points() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.use_cases)


  

  	
      	match_nep_chp() (in module egon.data.datasets.chp.match_nep)


      	match_nep_no_chp() (in module egon.data.datasets.power_plants.conventional)


      	match_nuts3_bl() (in module egon.data.datasets.demandregio)


      	match_osm_and_zensus_data() (in module egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	match_storage_units() (in module egon.data.datasets.storages.pumped_hydro)


      	max_hours (EgonPfHvStorage attribute)


      	mean_load_factor_per_cap_range() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	merge_inputs() (in module egon.data.datasets.industrial_sites)


      	merge_polygons_to_grid_district() (in module egon.data.datasets.mv_grid_districts)


      	MergeIndustrialSites (class in egon.data.datasets.industrial_sites)


      	meta_metadata() (in module egon.data.metadata)


      	min_down_time (EgonPfHvGenerator attribute)


      	min_up_time (EgonPfHvGenerator attribute)


      	MITChargingInfrastructure (class in egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure)


      	mobility() (in module egon.data.datasets.scenario_parameters.parameters)


      	mobility_parameters (EgonScenario attribute)


      	Model (class in egon.data.datasets)


      	model (EgonPfHvTransformer attribute)


      	modify_tables() (in module egon.data.datasets.osm)


      	MotorizedIndividualTravel (class in egon.data.datasets.emobility.motorized_individual_travel)


      	municipality_data() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	municipality_id (VoronoiMunicipalityCuts attribute)

      
        	(VoronoiMunicipalityCutsAssigned attribute)


        	(VoronoiMunicipalityCutsBase attribute)


      


      	mv_grid_district_HH_electricity_load() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	mv_grid_id (EgonEmobChargingInfrastructure attribute)

      
        	(EgonIndividualHeatingSupply attribute)


      


      	MvGridDistricts (class in egon.data.datasets.mv_grid_districts)


      	MvGridDistrictsDissolved (class in egon.data.datasets.mv_grid_districts)


  





N


  	
      	n_amenities_inside (CtsBuildings attribute)

      
        	(OsmBuildingsSynthetic attribute)


      


      	name (Calculate_dlr attribute)

      
        	(CH4Production attribute)


        	(CH4Storages attribute)


        	(Chp attribute)


        	(ChpEtrago attribute)


        	(Dataset attribute)


        	(DistrictHeatingAreas attribute)


        	(EgonPfHvCarrier attribute)


        	(EgonScenario attribute)


        	(Egon_etrago_gen attribute)


        	(ElectricalNeighbours attribute)


        	(FixEhvSubnetworks attribute)


        	(GasAreaseGon100RE attribute)


        	(GasAreaseGon2035 attribute)


        	(GasNodesAndPipes attribute)


        	(HeatDemandEurope attribute)


        	(HeatDemandImport attribute)


        	(HeatEtrago attribute)


        	(HeatSupply attribute)


        	(HeatTimeSeries attribute)


        	(HtsEtragoTable attribute)


        	(HydrogenBusEtrago attribute)


        	(HydrogenGridEtrago attribute)


        	(HydrogenMethaneLinkEtrago attribute)


        	(HydrogenPowerLinkEtrago attribute)


        	(HydrogenStoreEtrago attribute)


        	(IndustrialGasDemand attribute)


        	(IndustrialGasDemandeGon100RE attribute)


        	(IndustrialGasDemandeGon2035 attribute)


        	(Model attribute)


        	(NEP2021ConvPowerPlants attribute)


        	(OsmBuildingsFiltered attribute)


        	(OsmPolygonUrban attribute)


        	(PowerPlants attribute)


        	(RenewableFeedin attribute)


        	(SanityChecks attribute)


        	(ScenarioCapacities attribute)


        	(ScenarioParameters attribute)


        	(Tyndp attribute)


        	(WeatherData attribute)


      


  

  	
      	name_unit (NEP2021ConvPowerPlants attribute)


      	nbd (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	nearest() (in module egon.data.datasets.chp)


      	nearest_polygon_with_substation() (in module egon.data.datasets.mv_grid_districts)


      	neighbor_reduction() (in module egon.data.datasets.pypsaeursec)


      	NEP2021ConvPowerPlants (class in egon.data.datasets.scenario_capacities)


      	next_etrago_id() (in module egon.data.db)


      	nice_name (EgonPfHvCarrier attribute)


      	normalized_truck_traffic (EgonHeavyDutyTransportVoronoi attribute)


      	num_parallel (EgonPfHvLine attribute)

      
        	(EgonPfHvTransformer attribute)


      


      	numpy_nan() (in module egon.data.datasets.fill_etrago_gen)


      	nuts (EgonScenarioCapacities attribute)

      
        	(HvmvSubstPerMunicipality attribute)


        	(Vg250Gem attribute)


        	(Vg250GemClean attribute)


        	(Vg250GemPopulation attribute)


        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	nuts1 (EgonDestatisZensusHouseholdPerHaRefined attribute)

      
        	(HouseholdElectricityProfilesInCensusCells attribute)


        	(SeenergiesIndustrialSites attribute)


      


      	nuts3 (EgonDemandRegioCtsInd attribute)

      
        	(EgonDemandRegioHH attribute)


        	(EgonDemandRegioHouseholds attribute)


        	(EgonDemandRegioPopulation attribute)


        	(EgonDestatisZensusHouseholdPerHaRefined attribute)


        	(EgonHeavyDutyTransportVoronoi attribute)


        	(HouseholdElectricityProfilesInCensusCells attribute)


        	(IndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


      


      	nuts3_gdf() (in module egon.data.datasets.emobility.heavy_duty_transport.data_io)


      	nuts_mapping() (in module egon.data.datasets.scenario_capacities)


      	nuts_mview() (in module egon.data.datasets.vg250)


  





O


  	
      	objectid (SeenergiesIndustrialSites attribute)


      	offshore_weather_cells() (in module egon.data.datasets.renewable_feedin)


      	old_id (HvmvSubstPerMunicipality attribute)

      
        	(Vg250GemClean attribute)


      


      	OpenCycleGasTurbineEtrago (class in egon.data.datasets.power_etrago)


      	OpenStreetMap (class in egon.data.datasets.osm)


      	operator (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


      


      	orientation_primary (EgonPowerPlantPvRoofBuilding attribute)


      	orientation_primary_angle (EgonPowerPlantPvRoofBuilding attribute)


      	orientation_uniform (EgonPowerPlantPvRoofBuilding attribute)


      	osm (EgonMapZensusMvgdBuildings attribute)


      	osm_buildings() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	osm_id (DemandCurvesOsmIndustryIndividual attribute)

      
        	(EgonDemandRegioOsmIndElectricity attribute)


        	(EgonEhvSubstation attribute)


        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


        	(EgonOsmIndLoadCurvesIndividualDsmTimeseries attribute)


        	(OsmBuildingsFiltered attribute)


        	(OsmPolygonUrban attribute)


      


  

  	
      	osm_landuse_census_cells_melt() (in module egon.data.datasets.loadarea)


      	osm_landuse_melt() (in module egon.data.datasets.loadarea)


      	osm_www (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


      


      	OsmBuildingsFiltered (class in egon.data.datasets.power_plants.pv_rooftop_buildings)


      	OsmBuildingsStreets (class in egon.data.datasets.osm_buildings_streets)


      	OsmBuildingsSynthetic (class in egon.data.datasets.electricity_demand_timeseries.hh_buildings)


      	OsmLanduse (class in egon.data.datasets.loadarea)


      	OsmPolygonUrban (class in egon.data.datasets.loadarea)


      	Osmtgmod (class in egon.data.datasets.osmtgmod)


      	osmtgmod() (in module egon.data.datasets.osmtgmod)


      	overlay_grid_districts_with_counties() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	overwrite_H2_pipeline_share() (in module egon.data.datasets.pypsaeursec)


  





P


  	
      	p_max (EgonDemandregioSitesIndElectricityDsmTimeseries attribute)

      
        	(EgonEtragoElectricityCtsDsmTimeseries attribute)


        	(EgonOsmIndLoadCurvesIndividualDsmTimeseries attribute)


        	(EgonSitesIndLoadCurvesIndividualDsmTimeseries attribute)


      


      	p_max_pu (EgonPfHvGenerator attribute)

      
        	(EgonPfHvGeneratorTimeseries attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvLinkTimeseries attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStorageTimeseries attribute)


      


      	p_min (EgonDemandregioSitesIndElectricityDsmTimeseries attribute)

      
        	(EgonEtragoElectricityCtsDsmTimeseries attribute)


        	(EgonOsmIndLoadCurvesIndividualDsmTimeseries attribute)


        	(EgonSitesIndLoadCurvesIndividualDsmTimeseries attribute)


      


      	p_min_pu (EgonPfHvGenerator attribute)

      
        	(EgonPfHvGeneratorTimeseries attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvLinkTimeseries attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStorageTimeseries attribute)


      


      	p_nom (EgonHomeBatteries attribute)

      
        	(EgonPfHvGenerator attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


      


      	p_nom_extendable (EgonPfHvGenerator attribute)

      
        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


      


      	p_nom_max (EgonPfHvGenerator attribute)

      
        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


      


      	p_nom_min (EgonPfHvGenerator attribute)

      
        	(EgonPfHvLink attribute)


        	(EgonPfHvStorage attribute)


      


      	p_set (DemandCurvesOsmIndustry attribute)

      
        	(DemandCurvesOsmIndustryIndividual attribute)


        	(DemandCurvesSitesIndustry attribute)


        	(DemandCurvesSitesIndustryIndividual attribute)


        	(EgonDemandregioSitesIndElectricityDsmTimeseries attribute)


        	(EgonEtragoElectricityCts attribute)


        	(EgonEtragoElectricityCtsDsmTimeseries attribute)


        	(EgonEtragoElectricityHouseholds attribute)


        	(EgonEtragoHeatCts attribute)


        	(EgonOsmIndLoadCurvesIndividualDsmTimeseries attribute)


        	(EgonPfHvGenerator attribute)


        	(EgonPfHvGeneratorTimeseries attribute)


        	(EgonPfHvLink attribute)


        	(EgonPfHvLinkTimeseries attribute)


        	(EgonPfHvLoad attribute)


        	(EgonPfHvLoadTimeseries attribute)


        	(EgonPfHvStorage attribute)


        	(EgonPfHvStorageTimeseries attribute)


        	(EgonPfHvStore attribute)


        	(EgonPfHvStoreTimeseries attribute)


        	(EgonSitesIndLoadCurvesIndividualDsmTimeseries attribute)


      


      	park_end (EgonEvTrip attribute)


      	park_start (EgonEvTrip attribute)


      	path (HvmvSubstPerMunicipality attribute)

      
        	(Vg250GemClean attribute)


      


      	path_length (EgonPfHvBusmap attribute)


      	paths() (in module egon.data.config)


  

  	
      	peak_load (DemandCurvesOsmIndustryIndividual attribute)

      
        	(DemandCurvesSitesIndustryIndividual attribute)


      


      	peak_load_in_w (BuildingElectricityPeakLoads attribute)

      
        	(BuildingHeatPeakLoads attribute), [1]


      


      	phase_shift (EgonPfHvTransformer attribute)


      	phev_luxury (EgonEvCountMunicipality attribute)

      
        	(EgonEvCountMvGridDistrict attribute)


        	(EgonEvCountRegistrationDistrict attribute)


      


      	phev_medium (EgonEvCountMunicipality attribute)

      
        	(EgonEvCountMvGridDistrict attribute)


        	(EgonEvCountRegistrationDistrict attribute)


      


      	phev_mini (EgonEvCountMunicipality attribute)

      
        	(EgonEvCountMvGridDistrict attribute)


        	(EgonEvCountRegistrationDistrict attribute)


      


      	place_buildings_with_amenities() (in module egon.data.datasets.electricity_demand_timeseries.cts_buildings)


      	plant (SchmidtIndustrialSites attribute)


      	plot_heat_density_sorted() (in module egon.data.datasets.district_heating_areas.plot)
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      	unzip_peta5_0_1_heat_demands() (in module egon.data.datasets.heat_demand)


      	up_time_before (EgonPfHvGenerator attribute)


  

  	
      	update() (Dataset method)


      	use_case (EgonEmobChargingInfrastructure attribute)

      
        	(EgonEvTrip attribute)


      


  





V


  	
      	v_ang_max (EgonPfHvLine attribute)

      
        	(EgonPfHvTransformer attribute)


      


      	v_ang_min (EgonPfHvLine attribute)

      
        	(EgonPfHvTransformer attribute)


      


      	v_mag_pu_max (EgonPfHvBus attribute)


      	v_mag_pu_min (EgonPfHvBus attribute)


      	v_mag_pu_set (EgonPfHvBus attribute)

      
        	(EgonPfHvBusTimeseries attribute)


      


      	v_nom (EgonPfHvBus attribute)

      
        	(EgonPfHvLine attribute)


      


      	validate_electric_vehicles_numbers() (in module egon.data.datasets.emobility.motorized_individual_travel.tests)


      	validate_output() (in module egon.data.datasets.power_plants.pv_rooftop_buildings)


      	version (Calculate_dlr attribute)

      
        	(CH4Production attribute)


        	(CH4Storages attribute)


        	(Chp attribute)


        	(ChpEtrago attribute)


        	(Dataset attribute)


        	(DistrictHeatingAreas attribute)


        	(EgonPfHvBusmap attribute)


        	(Egon_etrago_gen attribute)


        	(ElectricalNeighbours attribute)


        	(FixEhvSubnetworks attribute)


        	(GasAreaseGon100RE attribute)


        	(GasAreaseGon2035 attribute)


        	(GasNodesAndPipes attribute)


        	(HeatDemandEurope attribute)


        	(HeatDemandImport attribute)


        	(HeatEtrago attribute)


        	(HeatSupply attribute)


        	(HeatTimeSeries attribute)


        	(HtsEtragoTable attribute)


        	(HydrogenBusEtrago attribute)


        	(HydrogenGridEtrago attribute)


        	(HydrogenMethaneLinkEtrago attribute)


        	(HydrogenPowerLinkEtrago attribute)


        	(HydrogenStoreEtrago attribute)


        	(IndustrialGasDemand attribute)


        	(IndustrialGasDemandeGon100RE attribute)


        	(IndustrialGasDemandeGon2035 attribute)


        	(Model attribute)


        	(PowerPlants attribute)


        	(RenewableFeedin attribute)


        	(SanityChecks attribute)


        	(ScenarioCapacities attribute)


        	(ScenarioParameters attribute)


        	(Tyndp attribute)


        	(WeatherData attribute)


      


  

  	
      	Vg250 (class in egon.data.datasets.vg250)


      	vg250 (OsmPolygonUrban attribute)


      	vg250_lan (MapMvgriddistrictsVg250 attribute)


      	vg250_metadata_resources_fields() (in module egon.data.datasets.vg250)


      	vg250_municipality_id (MapZensusVg250 attribute)


      	vg250_nuts3 (MapZensusVg250 attribute)


      	Vg250Gem (class in egon.data.datasets.zensus_vg250)


      	Vg250GemClean (class in egon.data.datasets.mv_grid_districts)


      	Vg250GemPopulation (class in egon.data.datasets.zensus_vg250)


      	Vg250Lan (class in egon.data.datasets.power_plants.pv_rooftop_buildings)


      	Vg250MvGridDistricts (class in egon.data.datasets.vg250_mv_grid_districts)


      	Vg250Sta (class in egon.data.datasets.zensus_vg250)


      	voltage (EgonEhvSubstation attribute)

      
        	(EgonEhvTransferBuses attribute)


        	(EgonHvmvSubstation attribute)


        	(EgonHvmvTransferBuses attribute)


      


      	voltage_level (BuildingElectricityPeakLoads attribute)

      
        	(DemandCurvesOsmIndustryIndividual attribute)


        	(DemandCurvesSitesIndustryIndividual attribute)


        	(EgonChp attribute)


        	(EgonPowerPlantPvRoofBuilding attribute)


        	(EgonPowerPlants attribute)


        	(EgonStorages attribute)


      


      	voronoi() (in module egon.data.datasets.emobility.heavy_duty_transport.h2_demand_distribution)


      	voronoi_egon100RE() (in module egon.data.datasets.gas_areas)


      	voronoi_egon2035() (in module egon.data.datasets.gas_areas)


      	voronoi_id (VoronoiMunicipalityCuts attribute)

      
        	(VoronoiMunicipalityCutsAssigned attribute)


        	(VoronoiMunicipalityCutsBase attribute)


      


      	VoronoiMunicipalityCuts (class in egon.data.datasets.mv_grid_districts)


      	VoronoiMunicipalityCutsAssigned (class in egon.data.datasets.mv_grid_districts)


      	VoronoiMunicipalityCutsBase (class in egon.data.datasets.mv_grid_districts)


  





W


  	
      	w_id (EgonEra5Cells attribute)

      
        	(EgonRenewableFeedIn attribute)


        	(MapZensusWeatherCell attribute)


      


      	w_th (EgonIndividualHeatingPeakLoads attribute)


      	weather_cell_id (EgonPowerPlantPvRoofBuilding attribute)

      
        	(EgonPowerPlants attribute)


      


      	weather_cells_in_germany() (in module egon.data.datasets.renewable_feedin)


      	weather_year (EgonRenewableFeedIn attribute)


      	WeatherData (class in egon.data.datasets.era5)


      	weatherId_and_busId() (in module egon.data.datasets.power_plants.assign_weather_data)


      	weight (EgonEmobChargingInfrastructure attribute)


      	wind() (in module egon.data.datasets.renewable_feedin)


      	wind_offshore() (in module egon.data.datasets.renewable_feedin)


      	wind_power_states() (in module egon.data.datasets.power_plants.wind_farms)


      	work() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.use_cases)


      	write_evs_trips_to_db() (in module egon.data.datasets.emobility.motorized_individual_travel)


      	write_hh_profiles_to_db() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	write_metadata_to_db() (in module egon.data.datasets.emobility.motorized_individual_travel)


      	write_model_data_to_db() (in module egon.data.datasets.emobility.motorized_individual_travel.model_timeseries)


  

  	
      	write_power_plants_table() (in module egon.data.datasets.power_plants.assign_weather_data)


      	write_refinded_households_to_db() (in module egon.data.datasets.electricity_demand_timeseries.hh_profiles)


      	write_saltcavern_potential() (in module egon.data.datasets.hydrogen_etrago.storage)


      	write_table_to_postgis() (in module egon.data.datasets.electricity_demand_timeseries.tools)


      	write_table_to_postgres() (in module egon.data.datasets.electricity_demand_timeseries.tools)


      	write_to_db() (in module egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.infrastructure_allocation)


      	wsk (Vg250Gem attribute)

      
        	(Vg250Lan attribute)


        	(Vg250Sta attribute)


      


      	wz (DemandCurvesSitesIndustry attribute)

      
        	(DemandCurvesSitesIndustryIndividual attribute)


        	(EgonDemandRegioCtsInd attribute)


        	(EgonDemandRegioOsmIndElectricity attribute)


        	(EgonDemandRegioSitesIndElectricity attribute)


        	(EgonDemandRegioTimeseriesCtsInd attribute)


        	(EgonDemandRegioWz attribute)


        	(HotmapsIndustrialSites attribute)


        	(IndustrialSites attribute)


        	(SchmidtIndustrialSites attribute)


        	(SeenergiesIndustrialSites attribute)


      


  





X


  	
      	x (EgonPfHvBus attribute)

      
        	(EgonPfHvLine attribute)


        	(EgonPfHvTransformer attribute)


      


  

  	
      	x_mp (DestatisZensusPopulationPerHa attribute)


  





Y


  	
      	y (EgonPfHvBus attribute)


      	y_mp (DestatisZensusPopulationPerHa attribute)


      	year (EgonDemandRegioCtsInd attribute)

      
        	(EgonDemandRegioHH attribute)


        	(EgonDemandRegioHouseholds attribute)


        	(EgonDemandRegioPopulation attribute)


        	(EgonDemandRegioTimeseriesCtsInd attribute)


        	(EgonHouseholdPrognosis attribute)


        	(EgonPopulationPrognosis attribute)


      


  





Z


  	
      	zensus_geom (MapZensusVg250 attribute)


      	zensus_household() (in module egon.data.datasets.society_prognosis)


      	zensus_misc_to_postgres() (in module egon.data.datasets.zensus)


      	zensus_population() (in module egon.data.datasets.society_prognosis)


      	zensus_population_id (CtsBuildings attribute)

      
        	(EgonDemandRegioZensusElectricity attribute)


        	(EgonHeatTimeseries attribute)


        	(EgonHouseholdPrognosis attribute)


        	(EgonMapZensusClimateZones attribute)


        	(EgonMapZensusMvgdBuildings attribute)


        	(EgonPetaHeat attribute)


        	(EgonPopulationPrognosis attribute)


        	(MapZensusDistrictHeatingAreas attribute)


        	(MapZensusGridDistricts attribute)


        	(MapZensusVg250 attribute)


        	(MapZensusWeatherCell attribute)


      


  

  	
      	ZensusMiscellaneous (class in egon.data.datasets.zensus)


      	ZensusMvGridDistricts (class in egon.data.datasets.zensus_mv_grid_districts)


      	ZensusPopulation (class in egon.data.datasets.zensus)


      	ZensusVg250 (class in egon.data.datasets.zensus_vg250)


      	zip_and_municipality_from_standort() (in module egon.data.datasets.power_plants.mastr)


  







          

      

      

    

  

    
      
          
            
  
Methods to include dynamic line rating in our model

To calculate the transmission capacity of each transmission line in the model,
the procedure suggested in the Principles for the Expansion Planning of the
German Transmission Network [NEP2021] where used:

1. Import the temperature and wind temporal raster layers from ERA-5. Hourly
resolution data from the year 2011 was used. Raster resolution
latitude-longitude grids at 0.25° x 0.25°.

2. Import shape file for the 9 regions proposed by the Principles for
the Expansion Planning. See Figure 1.

[image: regions DLR]
Figure 1: Representative regions in Germany for DLR analysis [NEP2021]

3. Find the lowest wind speed in each region. To perform this, for each
independent region, the wind speed of every cell in the raster layer should be
extracted and compared. This procedure is repeated for each hour in the
year 2011. The results are the 8760 lowest wind speed per region.

4. Find the highest temperature in each region. To perform this, for each
independent region, the temperature of every cell in the raster layer should
be extracted and compared. This procedure is repeated for each hour in the
year 2011. The results are the 8760 maximum temperature per region.

5. Calculate the maximum capacity for each region using the parameters shown in
Figure 2.

[image: table_max_capacity_DLR]
Figure 2: transmission capacity based on max temperature and min wind speed [NEP2021]

6. Assign the maximum capacity of the corresponding region to each transmission
line inside each one of them. Crossborder lines and underground lines receive
no values. It means that their capacities are static and equal to their nominal
values. Lines that cross borders between regions receive the lowest
capacity per hour of the regions containing the line.


	NEP2021

	Principles for the Expansion Planning of the German Transmission Network https://www.netzentwicklungsplan.de/








          

      

      

    

  

    
      
          
            
  Demand-side management (DSM) potentials are calculated in function dsm_cts_ind_processing.
Potentials relevant for the high and extra-high voltage grid are identified in the function dsm_cts_ind,
potentials within the medium- and low-voltage grids are determined within the function dsm_cts_ind_individual
in a higher spatial resolution. All this is part of the dataset DsmPotential.
The implementation is documented in detail within the following student work (in German): [EsterlDentzien].

Loads eligible to be shifted are assumed within industrial loads and loads from Commercial, Trade and Service (CTS).
Therefore, load time series from these sectors are used as input data (see section ref:elec_demand-ref).
Shiftable shares of loads mainly derive from heating and cooling processes and selected energy-intensive
industrial processes (cement production, wood pulp, paper production, recycling paper). Technical and sociotechnical
constraints are considered using the parametrization elaborated in [Heitkoetter]. An overview over the
resulting potentials for scenario eGon2035 can be seen in figure Aggregated DSM potential in Germany for scenario eGon2035. The table below summarizes the
aggregated potential for Germany per scenario. As the annual conventional electrical loads are assumed to be lower in the
scenario eGon100RE, also the DSM potential decreases compared to the scenario eGon2035.


[image: ../_images/DSM_potential.png]

Aggregated DSM potential in Germany for scenario eGon2035




Aggregated DSM Potential for Germany






	
	CTS

	Industry





	eGon2035

	1.2 GW

	150 MW



	eGon100RE

	900 MW

	150 MW






DSM is modelled following the approach of [Kleinhans]. DSM components are created wherever
respective loads are seen. Minimum and maximum shiftable power per time step depict time-dependent
charging and discharging power of a storage-equivalent buffers. Time-dependent capacities
of those buffers account for the time frame of management bounding the period within which
the shifting can be conducted. Figure Time-dependent DSM potential at one exemplary bus shows the resulting potential at one exemplary bus.


[image: ../_images/shifted_dsm-example.png]

Time-dependent DSM potential at one exemplary bus





          

      

      

    

  

    
      
          
            
  Battery storage units comprise home batteries and larger, grid-supportive batteries. National capacities for home batteries arise from external sources, e.g. the Grid Development Plan for the scenario eGon2035, whereas the capacities of large-scale batteries are a result of the grid optimization tool eTraGo [https://github.com/openego/eTraGo].

Home battery capacities are first distributed to medium-voltage grid districts (MVGD) and based on that further disaggregated to single buildings. The distribution on MVGD level is done proportional to the installed capacities of solar rooftop power plants, assuming that they are used as solar home storage.

Potential large-scale batteries are included in the data model at every substation. The data model includes technical and economic parameters, such as efficiencies and investment costs. The energy-to-power ratio is set to a fixed value of 6 hours. Other central parameters are given in the following table


Parameters of batteries for scenario eGon2035






	
	Value

	Sources





	Efficiency store

	98 %

	[DAE_store]



	Efficiency dispatch

	98 %

	[DAE_store]



	Standing loss

	0 %

	[DAE_store]



	Investment costs

	838 €/kW

	[DAE_store]



	Home storage units

	16.8 GW

	[NEP2021]






On transmission grid level, distinguishing between home batteries and large-scale batteries was not possible. Therefore, the capacities of home batteries were set as a lower boundary of the large-scale battery capacities.
This is implemented in the dataset StorageEtrago, the data for batteries in the transmission grid is stored in the database table grid.egon_etrago_storage.



          

      

      

    

  

    
      
          
            
  What flexibilities does e-mobility provide to the system. How did we implement it?



          

      

      

    

  

    
      
          
            
  The electricity demand considered includes demand from the residential, commercial and industrial sector.
The target values for scenario eGon2035 are taken from the German grid development plan from 2021 [NEP2021],
whereas the distribution on NUTS3-levels corresponds to the data from the research project DemandRegio [demandregio].
The following table lists the electricity demands per sector:


Electricity demand per sector





	Sector

	Annual electricity demand in TWh





	residential

	115.1



	commercial

	123.5



	industrial

	259.5






A further spatial and temporal distribution of the electricity demand is needed to fullfil all requirements of the
subsequent grid optimization. Therefore different, sector-specific distributions methods were developed and applied.


Residential electricity demand

The annual electricity demands of households on NUTS3-level from DemandRegio are scaled to meet the national target
values for the respective scenario in dataset DemandRegio.
A further spatial and temporal distribution of residential electricity demands is performed in
HouseholdElectricityDemand as described
in [Buettner2022].
The result is a consistent dataset across aggregation levels with an hourly resolution.


[image: images/S27-3.png]

Electricity demand on NUTS 3-level (upper left); Exemplary MVGD (upper right); Study region in Flensburg (20 Census cells, bottom) from [Buettner2022]




[image: images/S27-4a.png]

Electricity demand time series on different aggregation levels from [Buettner2022]





Commercial electricity demand

The distribution of electricity demand from the commercial, trade and service (CTS) sector is also based on data from
DemandRegio, which provides annual electricity demands on NUTS3-level for Germany. In  dataset
CtsElectricityDemand the annual electricity
demands are further distributed to census cells (100x100m cells from [Census]) based on the distribution of heat demands,
which is taken from the Pan-European Thermal Altlas version 5.0.1 [Peta]. For further information refer to section
ref:heat_demand.
The applied methods for a futher spatial and temporal distribution to buildings is described in [Buettner2022] and
performed in dataset CtsDemandBuildings



Industrial electricity demand

To distribute the annual industrial electricity demand OSM landuse data as well as information on industrial sites are
taken into account.
In a first step (CtsElectricityDemand)
different sources providing information about specific sites and further information on the  industry sector in which
the respective industrial site operates are combined. Here, the three data sources [Hotmaps], [sEEnergies] and
[Schmidt2018] are aligned and joined.
Based on the resulting list of industrial sites in Germany and information on industrial landuse areas from OSM [OSM]
which where extracted and processed in OsmLanduse the annual demands
were distributed.
The spatial and temporal distribution is performed in
IndustrialDemandCurves.
For the spatial distribution of annual electricity demands from DemandRegio [demandregio] which are available on
NUTS3-level are in a first step evenly split 50/50 between industrial sites and OSM-polygons tagged as industrial areas.
Per NUTS-3 area the respective shares are then distributed linearily based on the area of the corresponding landuse polygons
and evenly to the identified industrial sites.
In a next step the temporal disaggregation of the annual demands is carried out taking information about the industrial
sectors and sector-specific standard load profiles from [demandregio] into account.
Based on the resulting time series and their peak loads the corresponding grid level and grid connections point is
identified.



Electricity demand in neighbouring countries

The neighbouring countries considered in the model are represented in a lower spatial resolution of one or two buses per
country. The national demand timeseries in an hourly resolution of the respective countries is taken from the Ten-Year
Network Development Plan, Version 2020 [TYNDP]. In case no data for the target year is available the data is is
interpolated linearly.
Refer to the corresponding dataset for detailed information:
ElectricalNeighbours




          

      

      

    

  

    
      
          
            
  
High and extra-high voltage grids

The model of the German extra-high (eHV) and high voltage (HV) grid is based
on data retrieved from OpenStreetMap (OSM) (status January 2021) [OSM] and additional
parameters for standard transmission lines from [Brakelmann2004]. To gather all
required information, such as line topology, voltage level, substation locations,
and electrical parameters, to create a calculable power system model, the *osmTGmod*
tool [https://github.com/openego/osmTGmod] was used. The corresponding dataset
Osmtgmod executes osmTGmod
and writes the resulting data to the database.

The resulting grid model includes the voltage levels 380, 220 and 110 kV and
all substations interconnecting the different grid levels. Information about
border crossing lines are as well extracted from OSM data by osmTGmod.
For further information on the generation of the grid topology please refer to [Mueller2018].
The neighbouring countries are included in the model in a significantly lower
spatial resolution with one or two nodes per country. The border crossing lines
extracted by osmTGmod are extended to representative nodes of the respective
country in dataset
ElectricalNeighbours. The
resulting grid topology is shown in the following figure.


	..figure:: images/Stromnetz.png
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Medium and low-voltage grids

Medium (MV) and low (LV) voltage grid topologies for entire Germany are generated using
the python tool ding0 ding0 [https://github.com/openego/ding0].
ding0 generates synthetic grid topologies based on high-resolution geodata and routing
algorithms as well as typical network planning principles.
The generation of the
grid topologies is not part of eGon_data, but ding0 solely uses data generated with eGon_data,
such as locations of HV/MV stations (see High and extra-high voltage grids), locations and peak demands
of buildings in the grid (see Building data respectively Electricity),
as well as locations of generators from MaStR (see Marktstammdatenregister). A full list
of tables used in ding0 can be found in its config [https://github.com/openego/ding0/blob/dev/ding0/config/config_db_tables.cfg].
An exemplary MV grid with one underlying LV grid is shown in figure Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0.
The grid data of all over 3.800 MV grids is published on zenodo [https://zenodo.org/record/890479].


[image: ../_images/ding0_mv_lv_grid.png]

Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0



Besides data on buildings and generators, ding0 requires data on the supplied areas
by each grid. This is as well done in eGon_data and described in the following.


MV grid districts

Medium-voltage (MV) grid districts describe the area supplied by one MV grid.
They are defined by one polygon that represents the
supply area. Each MV grid district is connected to the HV grid via a single
substation. An exemplary MV grid district is shown in figure Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0 (orange line).

The MV grid districts are generated in the dataset
MvGridDistricts.
The methods used for identifying the MV grid districts are heavily inspired
by Hülk et al. (2017) [Huelk2017]
(section 2.3), but the implementation differs in detail.
The main difference is that direct adjacency is preferred over proximity.
For polygons of municipalities
without a substation inside, it is iteratively checked for direct adjacent
other polygons that have a substation inside. Speaking visually, a MV grid
district grows around a polygon with a substation inside.

The grid districts are identified using three data sources


	Polygons of municipalities (Vg250GemClean)


	Locations of HV-MV substations (EgonHvmvSubstation)


	HV-MV substation voronoi polygons (EgonHvmvSubstationVoronoi)




Fundamentally, it is assumed that grid districts (supply areas) often go
along borders of administrative units, in particular along the borders of
municipalities due to the concession levy.
Furthermore, it is assumed that one grid district is supplied via a single
substation and that locations of substations and grid districts are designed
for aiming least lengths of grid line and cables.

With these assumptions, the three data sources from above are processed as
follows:


	Find the number of substations inside each municipality


	Split municipalities with more than one substation inside


	Cut polygons of municipalities with voronoi polygons of respective
substations


	Assign resulting municipality polygon fragments to nearest substation






	Assign municipalities without a single substation to nearest substation in
the neighborhood


	Merge all municipality polygons and parts of municipality polygons to a
single polygon grouped by the assigned substation




For finding the nearest substation, as already said, direct adjacency is
preferred over closest distance. This means, the nearest substation does not
necessarily have to be the closest substation in the sense of beeline distance.
But it is the substation definitely located in a neighboring polygon. This
prevents the algorithm to find solutions where a MV grid districts consists of
multi-polygons with some space in between.
Nevertheless, beeline distance still plays an important role, as the algorithm
acts in two steps


	Iteratively look for neighboring polygons until there are no further
polygons


	Find a polygon to assign to by minimum beeline distance




The second step is required in order to cover edge cases, such as islands.

For understanding how this is implemented into separate functions, please
see define_mv_grid_districts.



Load areas

Load areas (LAs) are defined as geographic clusters where electricity is consumed.
They are used in ding0 to determine the extent and number of LV grids. Thus, within
each LA there are one or multiple MV-LV substations, each supplying one LV grid.
Exemplary load areas are shown in figure Exemplary synthetic medium-voltage grid with underlying low-voltage grid generated with ding0 (grey and orange areas).

The load areas are set up in the
LoadArea dataset.
The methods used for identifying the load areas are heavily inspired
by Hülk et al. (2017) [Huelk2017] (section 2.4).





          

      

      

    

  

    
      
          
            
  The electrical power plants park, including data on geolocations, installed capacities, etc.
for the different scenarios is set up in the dataset
PowerPlants.

Main inputs into the dataset are target capacities per technology and federal state
in each scenario (see Modeling concept and scenarios) as well as the MaStR (see Marktstammdatenregister),
OpenStreetMap (see OpenStreetMap) and potential areas (provided through the data bundle,
see Data bundle) to distribute the generator capacities within each federal state region.
The approach taken to distribute the target capacities within each federal state differs for
the different technologies and is described in the following.
The final distribution in the eGon2035 scenario is shown in figure Generator park in the eGon2035 scenario.


[image: ../_images/Erzeugerpark.png]

Generator park in the eGon2035 scenario




Onshore wind



Offshore wind



PV ground mounted

The distribution of PV ground mounted is implemented in function insert
which is part of the dataset PowerPlants.
The following steps are conducted:


	The sites and capacities of exisitng PV parks are imported using MaStR data (see Marktstammdatenregister).


	Potential areas for PV ground mounted are assumed to be areas next to highways and railways as well as on agricultural land with a low degree of utilisation, as it can be seen in figure Example: sites of existing PV ground mounted parks and potential areas. Those areas (provided through the data bundle, see Data bundle) are imported while merging or disgarding small areas.


	The locations of existing parks and the potential areas are intersected with each other while considering a buffer around the locations of existing parks to find out where there already are parks at or close to potential areas. This results in a selection of potential areas.


	The capacities of the existing parks are considered and compared to the target values for the specific scenario per federal state (see Modeling concept and scenarios). The required expansion capacity is derived.


	If expansion of PV ground mounted capacity is required, capacities are calculated depending on the area size of the formerly selected potential areas. The resulting parks are therefore located on the selected potential areas.


	The resulting capacities are compared to the target values for the specific scenario per federal state. If the target value is exceeded, a linear downscaling is conducted. If the target value is not reached yet, the remaining capacity is distributed linearly among the rest of the potential areas within the state.





[image: ../_images/PV_freiflaeche.png]

Example: sites of existing PV ground mounted parks and potential areas





PV rooftop

In a first step, the target capacity in the eGon2035 and eGon100RE scenarios is distributed
to all MV grid districts linear to the residential and CTS electricity demands in the
grid district (done in function
pv_rooftop_per_mv_grid).

Afterwards, the PV rooftop capacity per MV grid district is disaggregated
to individual buildings inside the grid district (done in function
pv_rooftop_to_buildings).
The basis for this is data from the MaStR, which is first cleaned and missing information
inferred, and then allocated to specific buildings. New PV plants are in a last step
added based on the capacity distribution from MaStR.
These steps are in more detail described in the following.

MaStR data cleaning and inference:


	Drop duplicates and entries with missing critical data.


	Determine most plausible capacity from multiple values given in MaStR data.


	Drop generators that don’t have a plausible capacity (23.5 MW > P > 0.1 kW).


	Randomly and weighted add a start-up date if it is missing.


	Extract zip and municipality from ‘site’ given in MaStR data.


	Geocode unique zip and municipality combinations with Nominatim (1 sec
delay). Drop generators for which geocoding failed or which are located
outside the municipalities of Germany.


	Add some visual sanity checks for cleaned data.




Allocation of MaStR plants to buildings:


	Allocate each generator to an existing building from OSM or a synthetic building
(see Building data).


	Determine the quantile each generator and building is in depending on the
capacity of the generator and the area of the polygon of the building.


	Randomly distribute generators within each municipality preferably within
the same building area quantile as the generators are capacity wise.


	If not enough buildings exist within a municipality and quantile additional
buildings from other quantiles are chosen randomly.




Disaggregation of PV rooftop scenario capacities:


	The scenario data per federal state is linearly distributed to the MV grid
districts according to the PV rooftop potential per MV grid district.


	The rooftop potential is estimated from the building area given from the OSM
buildings.


	Grid districts, which are located in several federal states, are allocated
PV capacity according to their respective roof potential in the individual
federal states.


	The disaggregation of PV plants within a grid district respects existing
plants from MaStR, which did not reach their end of life.


	New PV plants are randomly and weighted generated using the capacity distribution of
PV rooftop plants from MaStR.


	Plant metadata (e.g. plant orientation) is also added randomly and weighted
using MaStR data as basis.






Hydro

In the case of hydropower plants, a distinction is made between the carrier run-of-river
and reservoir.
The methods to distribute and allocate are the same for both carriers.
In a first step all suitable power plants (correct carrier, valid geolocation, information
about federal state) are selected and their installed capacity is scaled to meet the target
values for the respective federal state and scenario.
Information about the voltage level the power plants are connected to is obtained. In case
no information is availabe the voltage level is identified using threshold values for the
installed capacity (see assign_voltage_level).
In a next step the correct grid connection point is identified based on the voltage level
and geolocation of the power plants (see assign_bus_id)
The resulting list of power plants it added to table
EgonPowerPlants.



Biomass

The allocation of biomass-based power plants follows the same method as the one for hydro
power plants and is performed in function insert_biomass_plants



Conventional

CHP

non-chp

In function allocate_conventional_non_chp_power_plants
capacities for conventional power plants, which are no chp plants, with carrier oil and
gas are allocated.




          

      

      

    

  

    
      
          
            
  Information about gas demands and their spatial and temporal aggregation, including hydrogen and methane demands



          

      

      

    

  

    
      
          
            
  Information about the gas grids and how they were created


Methane grid



Hydrogen grid




          

      

      

    

  

    
      
          
            
  Description of methods and assumptions to include potential h2 stores in the system


Hydrogen stores



Methane stores




          

      

      

    

  

    
      
          
            
  Information on gas supply - hydrogen and methane.



          

      

      

    

  

    
      
          
            
  Heat demands comprise space heating and drinking hot water demands from
residential and comertial trade and service (CTS) buildings.
Process heat demands from the industry are, depending on the required temperature
level, modelled as electrcity, hydrogen or methane demand.

The spatial distribution of annual heat demands is taken from the Pan-European
Thermal Altlas version 5.0.1 [Peta].
This source provides data on annual european residential and CTS heat demands
per hectar cell for the year 2015.
In order to model future demands, the demand distribution extracted by Peta is
then scaled to meet a national annual demand from external sources.
The following national demands are taken for the selected scenarios:


Heat demands per sector and scenario







	
	Residential sector

	CTS sector

	Sources





	eGon2035

	379 TWh

	122 TWh

	[Energiereferenzprognose]



	eGon100RE

	284 TWh

	89 TWh

	[Energiereferenzprognose]






The resulting data is stored in the database table demand.egon_peta_heat.
The implementation of these dataprocessing steps can be found in HeatDemandImport.

Figure Spatial distribution of residential heat demand in scenario eGon2035 shows the distribution of residential heat demands for scenario eGon2035,
categorized for different levels of annual demands.


[image: ../_images/residential_heat_demand.png]

Spatial distribution of residential heat demand in scenario eGon2035



Afterwards, the annual heat demands are used to create hourly heat demand profiles.
For residential heat demand profiles a pool of synthetical created bottom-up demand
profiles is used. Depending on the mean temperature per day, these profiles are
randomly assigned to each residential building. The methodology is described in
detail in [Buettner2022].

Data on residential heat demand profiles is stored in the database within the tables demand.egon_heat_timeseries_selected_profiles, demand.egon_daily_heat_demand_per_climate_zone, boundaries.egon_map_zensus_climate_zones. To create the profiles for a selected buidling, these tables
have to be combined, e.g. like this:

SELECT (b.demand/f.count * UNNEST(e.idp) * d.daily_demand_share)*1000 AS demand_profile
FROM (SELECT * FROM demand.egon_heat_timeseries_selected_profiles,
UNNEST(selected_idp_profiles) WITH ORDINALITY as selected_idp) a
JOIN demand.egon_peta_heat b
ON b.zensus_population_id = a.zensus_population_id
JOIN boundaries.egon_map_zensus_climate_zones c
ON c.zensus_population_id = a.zensus_population_id
JOIN demand.egon_daily_heat_demand_per_climate_zone d
ON (c.climate_zone = d.climate_zone AND d.day_of_year = ordinality)
JOIN demand.egon_heat_idp_pool e
ON selected_idp = e.index
JOIN (SELECT zensus_population_id, COUNT(building_id)
FROM demand.egon_heat_timeseries_selected_profiles
GROUP BY zensus_population_id
) f
ON f.zensus_population_id = a.zensus_population_id
WHERE a.building_id = SELECTED_BUILDING_ID
AND b.scenario = 'eGon2035'
AND b.sector = 'residential';





Exemplary resulting residential heat demand time series for a selected day in winter and
summer considering different aggregation levels are visualized in figures Temporal distribution of residential heat demand for a selected day in winter and Temporal distribution of residential heat demand for a selected day in summer.


[image: ../_images/residential_heat_demand_profile_winter.png]

Temporal distribution of residential heat demand for a selected day in winter




[image: ../_images/residential_heat_demand_profile_summer.png]

Temporal distribution of residential heat demand for a selected day in summer



The temporal disaggregation of CTS heat demand is done using Standard Load Profiles Gas
from demandregio [demandregio] considering different profiles per CTS branch.

The heat demand time series for both sectors creation is done in the Dataset
HeatTimeSeries.



          

      

      

    

  

    
      
          
            
  The heat sector can provide flexibility through stores that allow shifting energy in time. The data model includes hot water tanks as heat stores in individual buildings and pit thermal energy storage for district heating grids (further described in District heating).

Within the data model, potential locations as well as technical and economic parameters of these stores are defined. The installed store and (dis-)charging capacities are part of the grid optimization methods that can be performed by eTraGo [https://github.com/openego/eTraGo]. The power-to-energy ratio is not predefined but a result of the optimization, which allows to build heat stores with various time horizons.

Individual heat stores can be built in every building with an individual heat pump.  Central heat stores can be built next to district heating grids. There are no maximum limits for the energy output as well as (dis-)charging capacities implemented yet.

Central cost assumptions for central and decentral heat stores are listed in the table below. The parameters can differ for each scenario in order to include technology updates and learning curves. The table focuses on the scenario eGon2035.


Parameters of heat stores









	
	Technology

	Costs for store capacity

	Costs for (dis-)charging capacity

	Round-trip efficiency

	Sources





	District heating

	Pit thermal energy storage

	0.51 EUR / kWh

	0 EUR / kW

	70 %

	[DAE_store]



	Buildings with heat pump

	Water tank

	1.84 EUR / kWh

	0 EUR / kW

	70 %

	[DAE_store]






The heat stores are implemented as a part of the dataset HeatEtrago, the data is written into the tables grid.egon_etrago_bus, grid.egon_etrago_link and grid.egon_etrago_store.



          

      

      

    

  

    
      
          
            
  Heat demand of residential as well as commercial, trade and service (CTS) buildings can be supplied by different technologies and carriers. Within the data model creation, capacities of supply technologies are assigned to specific locations and their demands. The hourly dispatch of heat supply is not part of the data model, but a result of the grid optimization tools.

In general, heat supply can be divided into three categories which include specific technologies: residential and CTS buildings in a district heating area, buildings supplied by individual heat pumps, and buildings supplied by conventional gas boilers. The shares of these categories are taken from external sources for each scenario.


Heat demands of different supply categories







	
	District heating

	Individual heat pumps

	Individual gas boilers





	eGon2035

	69 TWh

	27.24 TWh

	390.78 TWh



	eGon100RE

	61.5 TWh

	311.5 TWh

	0 TWh






The following subsections describe the heat supply methodology for each category.


District heating

First, district heating areas are defined for each scenario based on existing district heating areas and an overall district heating share per scenario. To reduce the model complexity, district heating areas are defined per Census cell, either all buildings within a cell are supplied by district heat or none. The first step of the extraction of district heating areas is the identification of Census cells with buildings that are currently supplied by district heating using the building dataset of Census. All Census cells where more than 30% of the buildings are currently supplied by district heat are defined as cells inside a district heating area.
The identified cells are then summarized by combining cells that have a maximum distance of 500m.

Second, additional Census cells are assigned to district heating areas considering the heat demand density. Assuming that new district heating grids are more likely in cells with high demand, the remaining Census cells outside of a district heating grid are sorted by their demands. Until the pre-defined national district heating demand is met, cells from that list are assigned to district heating areas. This can also result in new district heating grids which cover only a few Census cells.

To avoid unrealistic large district heating grids in areas with many cities close to each other (e.g. the Ruhr Area), district heating areas with an annual demand > 4 TWh are split by NUTS3 boundaries.

The implementation of the district heating area demarcation is done in DistrictHeatingAreas, the resulting data is stored in the tables demand.egon_map_zensus_district_heating_areas and  demand.egon_district_heating_areas.
The resulting district heating grids for the scenario eGon2035 are visualized in figure Defined district heating grids in scenario eGon2035, which also includes a zoom on the district heating grid in Berlin.


[image: ../_images/district_heating_areas.png]

Defined district heating grids in scenario eGon2035



The national capacities for each supply technology are taken from the Grid Development Plan (GDP) for the scenario eGon2035, in the eGon100RE scenario they are the result of the pypsa-eur-sec run. The distribution of the capacities to district heating grids is done similarly based on [FfE2017], which is also used in the GDP. The basic idea of this method is to use a cascade of heat supply technologies until the heat demand can be covered.


	Combined heat and power (CHP) plants are assigned to nearby district heating grids first. Their location and thermal capacities are from Marktstammdatenregister [MaStR]. To identify district heating grids that need additional suppliers, the remaining annual heat demand is calculated using the thermal capacities of the CHP plants and assumed full load hours.


	Large district heating grids with an annual demand that is higher than 96GWh can be supplied by geothermal plants, in case of an intersection of geothermal potential areas and the district heating grid.  Smaller district heating grids can be supplied by solar thermal power plants. The national capacities are distributed proportionally to the remaining heat demands. After assigning these plants, the remaining heat demands are reduced by the thermal output and assumed full load hours.


	Next, the national capacities for central heat pumps and resistive heaters are distributed to all district heating areas proportionally to their remaining demands. Heat pumps are modeled with a time-dependent coefficient of performance depending on the temperature data.


	In the last step, gas boilers are assigned to every district heating grid regardless of the remaining demand. In the optimization, this can be used as a fall-back option to not run into infeasibilities.




The distribution of CHP plants for different carriers is shown in figure Spatial distribution of CHP plants in scenario eGon2035.


[image: ../_images/combined_heat_and_power_plants.png]

Spatial distribution of CHP plants in scenario eGon2035





Individual heat pumps

Heat pumps supplying individual buildings are first distributed to each medium-voltage grid district, these capacities are later on further disaggregated to single buildings. Similar to central heat pumps they are modeled with a time-dependent coefficient of performance depending on the temperature data.

The distribution of the national capacities to each medium-voltage grid district is proportional to the heat demand outside of district heating grids.

@RLI: Distribution on building level



Individual gas boilers

All residential and CTS buildings that are neither supplied by a district heating grid nor an individual heat pump are supplied by gas boilers. The demand time series of these buildings are multiplied by the efficiency of gas boilers and aggregated per methane grid node.

All heat supply categories are implemented in the dataset HeatSupply. The data is stored in the tables demand.egon_district_heating and  demand.egon_individual_heating.




          

      

      

    

  

    
      
          
            
  
Data bundle

The data bundle is published on
zenodo [https://sandbox.zenodo.org/record/1167119]. It contains several data
sets, which serve as a basis for egon-data:


	Climate zones in Germany


	Data on eMobility individual trips of electric vehicles


	Spatial distribution of deep geothermal potentials in Germany


	Annual profiles in hourly resolution of electricity demand of private households


	Sample heat time series including hot water and space heating for single- and multi-familiy houses


	Hydrogen storage potentials in salt structures


	Information about industrial sites with DSM-potential in Germany


	Data extracted from the German grid development plan - power


	Parameters for the classification of gas pipelines


	Preliminary results from scenario generator pypsa-eur-sec


	German regions suitable to model dynamic line rating


	Eligible areas for wind turbines and ground-mounted PV systems


	Definitions of industrial and commercial branches


	Zensus data on households


	Geocoding of all unique combinations of ZIP code and municipality within the Marktstammdatenregister




For further description of the data including licenses and references please refer to the Zenodo repository.



Marktstammdatenregister

The Marktstammdatenregister [https://www.marktstammdatenregister.de/MaStR] (MaStR)
is the register for the German electricity and gas
market holding, among others, data on electricity and gas generation plants. In eGon-data
it is used for status quo data on PV plants, wind turbines, biomass, hydro power plants,
combustion power plants, nuclear power plants, geo- and solarthermal power plants, and storage units.
The data are obtained from zenodo, where raw MaStR data, downloaded with the tool
open-MaStR [https://github.com/OpenEnergyPlatform/open-MaStR] using the MaStR webservice,
is provided. It contains all data from the MaStR, including possible duplicates.
Currently, two versions are used:


	2021-05-03 [https://sandbox.zenodo.org/record/1167119]


	2022-11-17 [https://sandbox.zenodo.org/record/1132839]




The download is implemented in MastrData.



OpenStreetMap

OpenStreetMap [https://www.openstreetmap.org/] (OSM) is a free, editable map of the whole
world that is being built by volunteers and released with an open-content license.
In eGon-data it is, among others, used to obtain information on land use as well as
locations of buildings and amenities to spatially dissolve energy demand.
The OSM data is downloaded from the Geofabrik [https://www.geofabrik.de/] download
server, which holds extracts from the OpenStreetMap. Afterwards, they are imported
to the database using osm2pgsql with a custom style file. The implementation of this
can be found in OpenStreetMap.

In the OpenStreetMap
dataset, the OSM data is filtered, processed and enriched with other data. This is
described in the following subsections.


Amenity data

The data on amenities is used to disaggregate CTS demand data. It is filtered from the
raw OSM data using tags listed in script osm_amenities_shops_preprocessing.sql, e.g.
shops and restaurants. The filtered data is written to database table
openstreetmap.osm_amenities_shops_filtered.



Building data

The data on buildings is required by several tasks in the
pipeline, such as the disaggregation of household demand profiles or PV home
systems to buildings, as well as the DIstribution Network Generat0r ding0 [https://github.com/openego/ding0] (see also Medium and low-voltage grids).

The data processing steps are:


	Extract buildings and filter using relevant tags, e.g. residential and
commercial, see script osm_buildings_filter.sql for the full list of tags.
Resulting tables:


	All buildings: openstreetmap.osm_buildings


	Filtered buildings: openstreetmap.osm_buildings_filtered


	Residential buildings: openstreetmap.osm_buildings_residential






	Create a mapping table for building’s OSM IDs to the Zensus cells the
building’s centroid is located in.
Resulting tables:


	boundaries.egon_map_zensus_buildings_filtered (filtered)


	boundaries.egon_map_zensus_buildings_residential (residential only)






	Enrich each building by number of apartments from Zensus table
society.egon_destatis_zensus_apartment_building_population_per_ha
by splitting up the cell’s sum equally to the buildings. In some cases, a
Zensus cell does not contain buildings but there is a building nearby which
the no. of apartments is to be allocated to. To make sure apartments are
allocated to at least one building, a radius of 77m is used to catch building
geometries.


	Split filtered buildings into 3 datasets using the amenities’ locations:
temporary tables are created in script osm_buildings_temp_tables.sql, the
final tables in osm_buildings_amentities_results.sql.
Resulting tables:


	Buildings w/ amenities: openstreetmap.osm_buildings_with_amenities


	Buildings w/o amenities: openstreetmap.osm_buildings_without_amenities


	Amenities not allocated to buildings:
openstreetmap.osm_amenities_not_in_buildings








As there are discrepancies between the Census data [Census] and OSM building data when both
datasets are used to generate electricity demand profiles of households, synthetic buildings
are added in Census cells with households but without buildings. This is done as part
of the Demand_Building_Assignment
dataset in function generate_synthetic_buildings.
The synthetic building data are written to table openstreetmap.osm_buildings_synthetic.
The same is done in case of CTS electricity demand profiles. Here, electricity demand is
disaggregated to Census cells according to heat demand information from the
Pan European Thermal Atlas [Peta]. In case there are Census cells with electricity demand
assigned but no building or amenity data, synthetic buildings are added.
This is done as part
of the CtsDemandBuildings
dataset in function create_synthetic_buildings.
The synthetic building data are again written to table openstreetmap.osm_buildings_synthetic.



Street data

The data on streets is used in the DIstribution Network Generat0r ding0 [https://github.com/openego/ding0], e.g. for the routing of the grid.
It is filtered from the
raw OSM data using tags listed in script osm_ways_preprocessing.sql, e.g.
highway=secondary. Additionally, each way is split into its line segments and their
lengths is retained. The filtered streets data is written to database table
openstreetmap.osm_ways_preprocessed and the filtered streets with segments
to table openstreetmap.osm_ways_with_segments.





          

      

      

    

  

    
      
          
            
  
Motorized individual travel

The electricity demand data of motorized individual travel (MIT) for both the eGon2035
and eGon100RE scenario is set up
in the MotorizedIndividualTravel
dataset.

The profiles are generated using a modified version of
SimBEV v0.1.3 [https://github.com/rl-institut/simbev/tree/1f87c716d14ccc4a658b8d2b01fd12b88a4334d5].
SimBEV generates driving profiles for battery electric vehicles (BEVs) and
plug-in hybrid electric vehicles (PHEVs) based on MID survey data [MiD2017] per
RegioStaR7 region type [RegioStaR7_2020].
These profiles include driving, parking and (user-oriented) charging times.
Different vehicle classes are taken
into account whose assumed technical data is given in table EV types.
Moreover, charging probabilities for multiple types of charging
infrastructure are presumed based on [NOW2020] and [Helfenbein2021].
Given these assumptions, a pool of 33.000 EVs-types is pre-generated and provided through the data bundle
(see Data bundle) as well as written
to table EgonEvTrip.
The complete tech data and assumptions of the run can be found in the
metadata_simbev_run.json file, that is provided along with the trip data.


EV types









	Tecnnology

	Size

	Max. charging capacity slow in kW

	Max. charging capacity fast in kW

	Battery capacity in kWh

	Energy consumption in kWh/km





	BEV

	mini

	11

	120

	60

	0.1397



	BEV

	medium

	22

	350

	90

	0.1746



	BEV

	luxury

	50

	350

	110

	0.2096



	PHEV

	mini

	3.7

	40

	14

	0.1425



	PHEV

	medium

	11

	40

	20

	0.1782



	PHEV

	luxury

	11

	120

	30

	0.2138








Heavy-duty transport

In the context of the eGon project, it is assumed that all e-trucks will be
completely hydrogen-powered. The hydrogen demand data of all e-trucks is set up
in the HeavyDutyTransport
dataset for both the eGon2035 and eGon100RE scenario.

In both scenarios the hydrogen consumption is
assumed to be 6.68 kgH2 per 100 km with an additional supply chain leakage rate of 0.5 %
(see here [https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-delivery]).

For the eGon2035 scenario the ramp-up figures are taken from the
network development plan (version 2021) [https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/NEP_2035_V2021_2_Entwurf_Teil1.pdf]
(Scenario C 2035). According to this, 100,000 e-trucks are
expected in Germany in 2035, each covering an average of 100,000 km per year.
In total this means 10 Billion km.

For the eGon100RE scenario it is assumed that the heavy-duty transport is
completely hydrogen-powered. The total freight traffic with 40 Billion km is
taken from the
BMWK Langfristszenarien [https://www.langfristszenarien.de/enertile-explorer-wAssets/docs/LFS3_Langbericht_Verkehr_final.pdf#page=17]
for heavy-duty vehicles larger 12 t allowed total weight (SNF > 12 t zGG).

The total hydrogen demand is spatially distributed on the basis of traffic volume data from [BASt].
For this purpose, first a voronoi partition of Germany using the traffic measuring points is created.
Afterwards, the spatial shares of the Voronoi regions in each NUTS3 area are used to allocate
hydrogen demand to the NUTS3 regions and are then aggregated per NUTS3 region.
The refuelling is assumed to take place at a constant rate.
Finally, to
determine the hydrogen bus where the hydrogen demand is allocated to, the centroid
of each NUTS3 region is used to determine the respective hydrogen Voronoi cell (see
GasAreaseGon2035 and
GasAreaseGon100RE) it is
located in.




          

      

      

    

  

    
      
          
            
  
pipeline




          

      

      

    

  

    
      
          
            
  
dags



	pipeline








          

      

      

    

  

    
      
          
            
  
create_h2_buses

Map demand to H2 buses and write to DB


	
assign_h2_buses(scenario: str = 'eGon2035')

	




	
delete_old_entries(scenario: str)

	Delete loads and load timeseries.
:Parameters: scenario (str) – Name of the scenario.






	
insert_hgv_h2_demand()

	Insert list of hgv H2 demand (one per NUTS3) in database






	
insert_new_entries(hgv_h2_demand_gdf: geopandas.geodataframe.GeoDataFrame)

	Insert loads.
:Parameters: hgv_h2_demand_gdf (geopandas.GeoDataFrame) – Load data to insert.






	
kg_per_year_to_mega_watt(df: pd.DataFrame | gpd.GeoDataFrame)

	




	
read_hgv_h2_demand(scenario: str = 'eGon2035')

	






          

      

      

    

  

    
      
          
            
  
data_io

Read data from DB and downloads


	
bast_gdf()

	Reads BAST data.






	
boundary_gdf()

	Get outer boundary from database.






	
get_data()

	Load all necessary data.






	
nuts3_gdf()

	Read in NUTS3 geo shapes.








          

      

      

    

  

    
      
          
            
  
db_classes

DB tables / SQLAlchemy ORM classes for heavy duty transport


	
class EgonHeavyDutyTransportVoronoi(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
area

	




	
geometry

	




	
hydrogen_consumption

	




	
normalized_truck_traffic

	




	
nuts3

	




	
scenario

	




	
truck_traffic

	










          

      

      

    

  

    
      
          
            
  
h2_demand_distribution

Calculation of hydrogen demand based on a Voronoi partition of counted truck traffic
used to allocate it to NUTS3 regions and finally aggregate it on NUTS3 level.


	
calculate_total_hydrogen_consumption(scenario: str = 'eGon2035')

	Calculate the total hydrogen demand for trucking in Germany






	
geo_intersect(voronoi_gdf: geopandas.geodataframe.GeoDataFrame, nuts3_gdf: geopandas.geodataframe.GeoDataFrame, mode: str = 'intersection')

	Calculate Intersections between two GeoDataFrames and distribute truck traffic






	
run_egon_truck()

	




	
voronoi(points: geopandas.geodataframe.GeoDataFrame, boundary: geopandas.geodataframe.GeoDataFrame)

	Building a Voronoi Field from points and a boundary








          

      

      

    

  

    
      
          
            
  
heavy_duty_transport



	create_h2_buses

	data_io

	db_classes

	h2_demand_distribution





Heavy Duty Transport / Heavy Goods Vehicle (HGV)

Main module for preparation of model data (static and timeseries) for
heavy duty transport.

Contents of this module
* Creation of DB tables
* Download and preprocessing of vehicle registration data from BAST
* Calculation of hydrogen demand based on a Voronoi distribution of counted


truck traffic among NUTS 3 regions.





	Write results to DB


	Map demand to H2 buses and write to DB




Configuration

The config of this dataset can be found in datasets.yml in section
mobility_hgv.

Scenarios and variations

Assumptions can be changed within the datasets.yml.

In the context of the eGon project, it is assumed that e-trucks will be
completely hydrogen-powered and in both scenarios the hydrogen consumption is
assumed to be 6.68 kgH2 per 100 km with an additional
[supply chain leakage rate of 0.5 %](
https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-delivery).

### Scenario NEP C 2035

The ramp-up figures are taken from
[Scenario C 2035 Grid Development Plan 2021-2035](
https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/
NEP_2035_V2021_2_Entwurf_Teil1.pdf). According to this, 100,000 e-trucks are
expected in Germany in 2035, each covering an average of 100,000 km per year.
In total this means 10 Billion km.

### Scenario eGon100RE

In the case of the eGon100RE scenario it is assumed that the HGV traffic is
completely hydrogen-powered. The total freight traffic with 40 Billion km is
taken from the
[BMWk Langfristszenarien GHG-emission free scenarios (SNF > 12 t zGG)](
https://www.langfristszenarien.de/enertile-explorer-wAssets/docs/
LFS3_Langbericht_Verkehr_final.pdf#page=17).

## Methodology

Using a Voronoi interpolation, the censuses of the BASt data is distributed
according to the area fractions of the Voronoi fields within each mv grid or
any other geometries like NUTS-3.


	
class HeavyDutyTransport(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables()

	




	
download_hgv_data()

	






          

      

      

    

  

    
      
          
            
  
db_classes

DB tables / SQLAlchemy ORM classes for motorized individual travel


	
class EgonEvCountMunicipality(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Electric vehicle counts per municipality


	
ags

	




	
bev_luxury

	




	
bev_medium

	




	
bev_mini

	




	
phev_luxury

	




	
phev_medium

	




	
phev_mini

	




	
rs7_id

	




	
scenario

	




	
scenario_variation

	








	
class EgonEvCountMvGridDistrict(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Electric vehicle counts per MV grid district


	
bev_luxury

	




	
bev_medium

	




	
bev_mini

	




	
bus_id

	




	
phev_luxury

	




	
phev_medium

	




	
phev_mini

	




	
rs7_id

	




	
scenario

	




	
scenario_variation

	








	
class EgonEvCountRegistrationDistrict(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Electric vehicle counts per registration district


	
ags_reg_district

	




	
bev_luxury

	




	
bev_medium

	




	
bev_mini

	




	
phev_luxury

	




	
phev_medium

	




	
phev_mini

	




	
reg_district

	




	
scenario

	




	
scenario_variation

	








	
class EgonEvMetadata(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

List of EV Pool Metadata


	
end_date

	




	
eta_cp

	




	
grid_timeseries

	




	
grid_timeseries_by_usecase

	




	
scenario

	




	
soc_min

	




	
start_date

	




	
stepsize

	








	
class EgonEvMvGridDistrict(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

List of electric vehicles per MV grid district


	
bus_id

	




	
egon_ev_pool_ev_id

	




	
id

	




	
scenario

	




	
scenario_variation

	








	
class EgonEvPool(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Motorized individual travel: EV pool

Each row is one EV, uniquely defined by either (ev_id) or
(rs7_id, type, simbev_id).


	ev_id:

	Unique id of EV



	rs7_id:

	id of RegioStar7 region



	type:

	
	type of EV, one of

	
	bev_mini


	bev_medium


	bev_luxury


	phev_mini


	phev_medium


	phev_luxury










	simbev_ev_id:

	id of EV as exported by simBEV






	
ev_id

	




	
rs7_id

	




	
scenario

	




	
simbev_ev_id

	




	
type

	








	
class EgonEvTrip(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Motorized individual travel: EVs’ trips

Each row is one event of a specific electric vehicle which is
uniquely defined by rs7_id, ev_id and event_id.


	scenario:

	Scenario



	event_id:

	Unique id of EV event



	egon_ev_pool_ev_id:

	id of EV, references EgonEvPool.ev_id



	simbev_event_id:

	id of EV event, unique within a specific EV dataset



	location:

	
	Location of EV event, one of

	
	“0_work”


	“1_business”


	“2_school”


	“3_shopping”


	“4_private/ridesharing”


	“5_leisure”


	“6_home”


	“7_charging_hub”


	“driving”










	use_case:

	
	Use case of EV event, one of

	
	“public” (public charging)


	“home” (private charging at 6_home)


	“work” (private charging at 0_work)


	<empty> (driving events)










	charging_capacity_nominal:

	Nominal charging capacity in kW



	charging_capacity_grid:

	Charging capacity at grid side in kW,
includes efficiency of charging infrastructure



	charging_capacity_battery:

	Charging capacity at battery side in kW,
includes efficiency of car charger



	soc_start:

	State of charge at start of event



	soc_start:

	State of charge at end of event



	charging_demand:

	Energy demand during parking/charging event in kWh.
0 if no charging takes place.



	park_start:

	Start timestep of parking event (15min interval, e.g. 4 = 1h)



	park_end:

	End timestep of parking event (15min interval)



	drive_start:

	Start timestep of driving event (15min interval)



	drive_end:

	End timestep of driving event (15min interval)



	consumption:

	Energy demand during driving event in kWh





Notes

pgSQL’s REAL is sufficient for floats as simBEV rounds output to 4 digits.


	
charging_capacity_battery

	




	
charging_capacity_grid

	




	
charging_capacity_nominal

	




	
charging_demand

	




	
consumption

	




	
drive_end

	




	
drive_start

	




	
egon_ev_pool_ev_id

	




	
event_id

	




	
location

	




	
park_end

	




	
park_start

	




	
scenario

	




	
simbev_event_id

	




	
soc_end

	




	
soc_start

	




	
use_case

	










          

      

      

    

  

    
      
          
            
  
ev_allocation


	Calculate number of electric vehicles and allocate on different spatial




levels: allocate_evs_numbers()
* Allocate specific EVs to MV grid districts:
allocate_evs_to_grid_districts()


	
allocate_evs_numbers()

	Allocate electric vehicles to different spatial levels.

Accocation uses today’s vehicles registration data per registration
district from KBA and scales scenario’s EV targets (BEV and PHEV)
linearly using population. Furthermore, a RegioStaR7 code (BMVI) is
assigned.

Levels:
* districts of registration
* municipalities
* grid districts






	
allocate_evs_to_grid_districts()

	Allocate EVs to MV grid districts for all scenarios and scenario
variations.

Each grid district in
egon.data.datasets.mv_grid_districts.MvGridDistricts
is assigned a list of electric vehicles from the EV pool in
EgonEvPool based on the RegioStar7 region and the
counts per EV type in EgonEvCountMvGridDistrict.
Results are written to EgonEvMvGridDistrict.






	
calc_evs_per_grid_district(ev_data_muns)

	Calculate EVs per grid district by using population weighting


	Parameters

	ev_data_muns (pandas.DataFrame) – EV data for municipalities



	Returns

	pandas.DataFrame – EV data for grid districts










	
calc_evs_per_municipality(ev_data, rs7_data)

	Calculate EVs per municipality


	Parameters

	
	ev_data (pandas.DataFrame) – EVs per regstration district


	rs7_data (pandas.DataFrame) – RegioStaR7 data













	
calc_evs_per_reg_district(scenario_variation_parameters, kba_data)

	Calculate EVs per registration district


	Parameters

	
	scenario_variation_parameters (dict) – Parameters of scenario variation


	kba_data (pandas.DataFrame) – Vehicle registration data for registration district






	Returns

	pandas.DataFrame – EVs per registration district










	
fix_missing_ags_municipality_regiostar(muns, rs7_data)

	Check if all AGS of municipality dataset are included in RegioStaR7
dataset and vice versa.

As of Dec 2021, some municipalities are not included int the RegioStaR7
dataset. This is mostly caused by incorporations of a municipality by
another municipality. This is fixed by assigning a RS7 id from another
municipality with similar AGS (most likely a neighboured one).

Missing entries in the municipality dataset is printed but not fixed
as it doesn’t result in bad data. Nevertheless, consider to update the
municipality/VG250 dataset.


	Parameters

	
	muns (pandas.DataFrame) – Municipality data


	rs7_data (pandas.DataFrame) – RegioStaR7 data






	Returns

	pandas.DataFrame – Fixed RegioStaR7 data












          

      

      

    

  

    
      
          
            
  
helpers

Helpers: constants and functions for motorized individual travel


	
read_kba_data()

	Read KBA data from CSV






	
read_rs7_data()

	Read RegioStaR7 data from CSV






	
read_simbev_metadata_file(scenario_name, section)

	Read metadata of simBEV run


	Parameters

	
	scenario_name (str) – Scenario name


	section (str) – Metadata section to be returned, one of
* “tech_data”
* “charge_prob_slow”
* “charge_prob_fast”






	Returns

	pd.DataFrame – Config data










	
reduce_mem_usage(df: pandas.core.frame.DataFrame, show_reduction: bool = False) → pandas.core.frame.DataFrame

	Function to automatically check if columns of a pandas DataFrame can
be reduced to a smaller data type. Source:
https://www.mikulskibartosz.name/how-to-reduce-memory-usage-in-pandas/


	Parameters

	
	df (pd.DataFrame) – DataFrame to reduce memory usage on


	show_reduction (bool) – If True, print amount of memory reduced






	Returns

	pd.DataFrame – DataFrame with memory usage decreased












          

      

      

    

  

    
      
          
            
  
model_timeseries

Generate timeseries for eTraGo and pypsa-eur-sec


	Call order

	
	generate_model_data_eGon2035() / generate_model_data_eGon100RE()
* generate_model_data()



	generate_model_data_grid_district()
* load_evs_trips()
* data_preprocessing()
* generate_load_time_series()
* write_model_data_to_db()















Notes

# TODO REWORK
Share of EV with access to private charging infrastructure (flex_share) for
use cases work and home are not supported by simBEV v0.1.2 and are applied here
(after simulation). Applying those fixed shares post-simulation introduces
small errors compared to application during simBEV’s trip generation.

Values (cf. flex_share in scenario parameters
egon.data.datasets.scenario_parameters.parameters.mobility()) were
linearly extrapolated based upon
https://nationale-leitstelle.de/wp-content/pdf/broschuere-lis-2025-2030-final.pdf
(p.92):
* eGon2035: home=0.8, work=1.0
* eGon100RE: home=1.0, work=1.0


	
data_preprocessing(scenario_data: pandas.core.frame.DataFrame, ev_data_df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame

	Filter SimBEV data to match region requirements. Duplicates profiles
if necessary. Pre-calculates necessary parameters for the load time series.


	Parameters

	
	scenario_data (pd.Dataframe) – EV per grid district


	ev_data_df (pd.Dataframe) – Trip data






	Returns

	pd.Dataframe – Trip data










	
delete_model_data_from_db()

	Delete all eMob MIT data from eTraGo PF tables






	
generate_load_time_series(ev_data_df: pandas.core.frame.DataFrame, run_config: pandas.core.frame.DataFrame, scenario_data: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame

	Calculate the load time series from the given trip data. A dumb
charging strategy is assumed where each EV starts charging immediately
after plugging it in. Simultaneously the flexible charging capacity is
calculated.


	Parameters

	
	ev_data_df (pd.DataFrame) – Full trip data


	run_config (pd.DataFrame) – simBEV metadata: run config


	scenario_data (pd.Dataframe) – EV per grid district






	Returns

	pd.DataFrame – time series of the load and the flex potential










	
generate_model_data_bunch(scenario_name: str, bunch: range) → None

	Generates timeseries from simBEV trip data for a bunch of MV grid
districts.


	Parameters

	
	scenario_name (str) – Scenario name


	bunch (list) – Bunch of grid districts to generate data for, e.g. [1,2,..,100].
Note: bunch is NOT a list of grid districts but is used for slicing
the ordered list (by bus_id) of grid districts! This is used for
parallelization. See
egon.data.datasets.emobility.motorized_individual_travel.MotorizedIndividualTravel.generate_model_data_tasks()













	
generate_model_data_eGon100RE_remaining()

	Generates timeseries for eGon100RE scenario for grid districts which
has not been processed in the parallel tasks before.






	
generate_model_data_eGon2035_remaining()

	Generates timeseries for eGon2035 scenario for grid districts which
has not been processed in the parallel tasks before.






	
generate_model_data_grid_district(scenario_name: str, evs_grid_district: pandas.core.frame.DataFrame, bat_cap_dict: dict, run_config: pandas.core.frame.DataFrame) → tuple

	Generates timeseries from simBEV trip data for MV grid district


	Parameters

	
	scenario_name (str) – Scenario name


	evs_grid_district (pd.DataFrame) – EV data for grid district


	bat_cap_dict (dict) – Battery capacity per EV type


	run_config (pd.DataFrame) – simBEV metadata: run config






	Returns

	pd.DataFrame – Model data for grid district










	
generate_static_params(ev_data_df: pandas.core.frame.DataFrame, load_time_series_df: pandas.core.frame.DataFrame, evs_grid_district_df: pandas.core.frame.DataFrame) → dict

	Calculate static parameters from trip data.


	cumulative initial SoC


	cumulative battery capacity


	simultaneous plugged in charging capacity





	Parameters

	ev_data_df (pd.DataFrame) – Fill trip data



	Returns

	dict – Static parameters










	
load_evs_trips(scenario_name: str, evs_ids: list, charging_events_only: bool = False, flex_only_at_charging_events: bool = True) → pandas.core.frame.DataFrame

	Load trips for EVs


	Parameters

	
	scenario_name (str) – Scenario name


	evs_ids (list of int) – IDs of EV to load the trips for


	charging_events_only (bool) – Load only events where charging takes place


	flex_only_at_charging_events (bool) – Flexibility only at charging events. If False, flexibility is provided
by plugged-in EVs even if no charging takes place.






	Returns

	pd.DataFrame – Trip data










	
load_grid_district_ids() → pandas.core.series.Series

	Load bus IDs of all grid districts






	
write_model_data_to_db(static_params_dict: dict, load_time_series_df: pandas.core.frame.DataFrame, bus_id: int, scenario_name: str, run_config: pandas.core.frame.DataFrame, bat_cap: pandas.core.frame.DataFrame) → None

	Write all results for grid district to database


	Parameters

	
	static_params_dict (dict) – Static model params


	load_time_series_df (pd.DataFrame) – Load time series for grid district


	bus_id (int) – ID of grid district


	scenario_name (str) – Scenario name


	run_config (pd.DataFrame) – simBEV metadata: run config


	bat_cap (pd.DataFrame) – Battery capacities per EV type






	Returns

	None












          

      

      

    

  

    
      
          
            
  
tests

Sanity checks for motorized individual travel


	
validate_electric_vehicles_numbers(dataset_name, ev_data, ev_target)

	Validate cumulative numbers of electric vehicles’ distribution.

Tests
* Check if all cells are not NaN
* Check if total number matches produced results (tolerance: 0.01 %)


	Parameters

	
	dataset_name (str) – Name of data, used for error printing


	ev_data (pd.DataFrame) – EV data


	ev_target (int) – Desired number of EVs















          

      

      

    

  

    
      
          
            
  
motorized_individual_travel



	db_classes

	ev_allocation

	helpers

	model_timeseries

	tests





Motorized Individual Travel (MIT)

Main module for preparation of model data (static and timeseries) for
motorized individual travel.

Contents of this module
* Creation of DB tables
* Download and preprocessing of vehicle registration data from KBA and BMVI
* Calculate number of electric vehicles and allocate on different spatial


levels. See egon.data.metadata





	Extract and write pre-generated trips to DB




Configuration

The config of this dataset can be found in datasets.yml in section
emobility_mit.

Scenarios and variations


	Scenario overview


	Change scenario variation for 2050: adjust in




emobility_mit->scenario->variation->eGon100RE

Trip data

The electric vehicles’ trip data for each scenario have been generated using
simBEV [https://github.com/rl-institut/simbev/]. The methodical background
is given in its documentation [https://simbev.readthedocs.io].

6 different vehicle types are used:
* Battery Electric Vehicle (BEV): mini, medium, luxury
* Plug-in Hybrid Electric Vehicle (PHEV): mini, medium, luxury


EV types









	Tecnnology

	Size

	Max. charging capacity slow [kW]

	
	
	


	Max. charging capacity fast [kW]

	Battery capacity [kWh]

	
	
	
	


	Energy consumption [kWh/km]

	
	
	
	
	




	BEV

	mini

	11

	120

	60

	0.1397



	BEV

	medium

	22

	350

	90

	0.1746



	BEV

	luxury

	50

	350

	110

	0.2096



	PHEV

	mini

	3.7

	40

	14

	0.1425



	PHEV

	medium

	11

	40

	20

	0.1782



	PHEV

	luxury

	11

	120

	30

	0.2138






The complete tech data and assumptions of the run can be found in the metadata:
<WORKING_DIRECTORY>/data_bundle_egon_data/emobility/mit_trip_data/<SCENARIO>/
metadata_simbev_run.json.efficiency_fixed


	explain scenario parameters


	run params (all in meta file?)




EV allocation

The EVs per registration district (Zulassungsbezirk) is taken from KBA’s
vehicle registration data. The numbers per EV type (BEV and PHEV)


	RegioStaR7


	scenario parameters: shares




Further notes


	Sanity checks




Model paametrization

Example queries


	
class MotorizedIndividualTravel(dependencies)

	Bases: egon.data.datasets.Dataset






	
adapt_numpy_float64(numpy_float64)

	




	
adapt_numpy_int64(numpy_int64)

	




	
create_tables()

	Create tables for electric vehicles


	Returns

	None










	
download_and_preprocess()

	Downloads and preprocesses data from KBA and BMVI


	Returns

	
	pandas.DataFrame – Vehicle registration data for registration district


	pandas.DataFrame – RegioStaR7 data















	
extract_trip_file()

	Extract trip file from data bundle






	
write_evs_trips_to_db()

	Write EVs and trips generated by simBEV from data bundle to database
table






	
write_metadata_to_db()

	Write used SimBEV metadata per scenario to database.








          

      

      

    

  

    
      
          
            
  
db_classes

DB tables / SQLAlchemy ORM classes for charging infrastructure


	
class EgonEmobChargingInfrastructure(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base


	
cp_id

	




	
geometry

	




	
mv_grid_id

	




	
use_case

	




	
weight

	










          

      

      

    

  

    
      
          
            
  
infrastructure_allocation

The charging infrastructure allocation is based on [TracBEV[(
https://github.com/rl-institut/tracbev). TracBEV is a tool for the regional allocation
of charging infrastructure. In practice this allows users to use results generated via
[SimBEV](https://github.com/rl-institut/simbev) and place the corresponding charging
points on a map. These are split into the four use cases hpc, public, home and work.


	
get_data() → dict[gpd.GeoDataFrame]

	Load all data necessary for TracBEV. Data loaded:


	‘hpc_positions’ - Potential hpc positions


	‘landuse’ - Potential work related positions


	‘poi_cluster’ - Potential public related positions


	‘public_positions’ - Potential public related positions


	‘housing_data’ - Potential home related positions loaded from DB


	‘boundaries’ - MV grid boundaries


	miscellaneous found in datasets.yml in section charging_infrastructure









	
run_tracbev()

	Wrapper function to run charging infrastructure allocation






	
run_tracbev_potential(data_dict: dict) → None

	Main function to run TracBEV in potential (determination of all potential
charging points).


	Parameters

	data_dict (dict) – Data dict containing all TracBEV run information










	
run_use_cases(data_dict: dict) → None

	Run all use cases


	Parameters

	data_dict (dict) – Data dict containing all TracBEV run information










	
write_to_db(gdf: gpd.GeoDataFrame, mv_grid_id: int | float, use_case: str) → None

	Write results to charging infrastructure DB table


	Parameters

	
	gdf (geopandas.GeoDataFrame) – GeoDataFrame to save


	mv_grid_id (int or float) – MV grid ID corresponding to the data


	use_case (str) – Calculated use case















          

      

      

    

  

    
      
          
            
  
use_cases

Functions related to the four different use cases


	
apportion_home(home_df: pandas.core.frame.DataFrame, num_spots: int, config: dict)

	




	
distribute_by_poi(region_poi: gpd.GeoDataFrame, num_points: int | float)

	




	
home(home_data: geopandas.geodataframe.GeoDataFrame, uc_dict: dict) → geopandas.geodataframe.GeoDataFrame

	Calculate placements and energy distribution for use case hpc.


	Parameters

	
	home_data – gpd.GeoDataFrame
info about house types


	uc_dict – dict
contains basic run info like region boundary and save directory













	
home_charge_spots(house_array: pd.Series | np.array, config: dict)

	




	
hpc(hpc_points: geopandas.geodataframe.GeoDataFrame, uc_dict: dict) → geopandas.geodataframe.GeoDataFrame

	Calculate placements and energy distribution for use case hpc.


	Parameters

	
	hpc_points – gpd.GeoDataFrame
GeoDataFrame of possible hpc locations


	uc_dict – dict
contains basic run info like region boundary and save directory













	
match_existing_points(region_points: geopandas.geodataframe.GeoDataFrame, region_poi: geopandas.geodataframe.GeoDataFrame)

	




	
public(public_points: geopandas.geodataframe.GeoDataFrame, public_data: geopandas.geodataframe.GeoDataFrame, uc_dict: dict) → geopandas.geodataframe.GeoDataFrame

	Calculate placements and energy distribution for use case hpc.


	Parameters

	
	public_points – gpd.GeoDataFrame
existing public charging points


	public_data – gpd.GeoDataFrame
clustered POI


	uc_dict – dict
contains basic run info like region boundary and save directory













	
work(landuse: geopandas.geodataframe.GeoDataFrame, weights_dict: dict, uc_dict: dict) → geopandas.geodataframe.GeoDataFrame

	Calculate placements and energy distribution for use case hpc.


	Parameters

	
	landuse – gpd.GeoDataFrame
work areas by land use


	weights_dict – dict
weights for different land use types


	uc_dict – dict
contains basic run info like region boundary and save directory















          

      

      

    

  

    
      
          
            
  
motorized_individual_travel_charging_infrastructure



	db_classes

	infrastructure_allocation

	use_cases





Motorized Individual Travel (MIT) Charging Infrastructure

Main module for preparation of static model data for cahrging infrastructure for
motorized individual travel.

Contents of this module
* Creation of DB tables
* Download and preprocessing of vehicle registration data from zenodo
* Determination of all potential charging locations for the four charging use cases


home, work, public and hpc per mv grid district





	Write results to DB




Configuration

The config of this dataset can be found in datasets.yml in section
charging_infrastructure.

Charging Infrastructure

The charging infrastructure allocation is based on [TracBEV[(
https://github.com/rl-institut/tracbev). TracBEV is a tool for the regional allocation
of charging infrastructure. In practice this allows users to use results generated via
[SimBEV](https://github.com/rl-institut/simbev) and place the corresponding charging
points on a map. These are split into the four use cases home, work, public and hpc.


	
class MITChargingInfrastructure(dependencies)

	Bases: egon.data.datasets.Dataset






	
create_tables() → None

	Create tables for charging infrastructure


	Returns

	None










	
download_zip(url: str, target: Path, chunk_size: int | None = 128) → None

	Download zip file from URL.


	Parameters

	
	url (str) – URL to download the zip file from


	target (pathlib.Path) – Directory to save zip to


	chunk_size (int or None) – Size of chunks to download













	
get_tracbev_data() → None

	Wrapper function to get TracBEV data provided on Zenodo.






	
unzip_file(source: pathlib.Path, target: pathlib.Path) → None

	Unzip zip file


	Parameters

	
	source (Path) – Zip file path to unzip


	target (Path) – Directory to save unzipped content to















          

      

      

    

  

    
      
          
            
  
emobility




          

      

      

    

  _images/DSM_potential.png
(a) GHD & Industrie in eGon2035

(b) GHD & Industrie in eGon100RE

16

14

Potential in MW





_images/PV_freiflaeche.png
@ standort PV-Anlage I
[ PV-Potentialflichen Landwirtschaft
- [ pv-Potentialflache StraRen und Bahnlinien
 0oSM Standard =T ol






_images/Erzeugerpark.png
Kraftwerkspark

© solar rooftop

solar ground
e wind_onshore

¢ wind_offshore

® biomass

reservoir






_images/Logos_Projektpartner_egon_data.png
II Hochschule

Flensburg
University of
Applied Sciences

REINER LEMOINE

Europa-Universitét

Deutsches Zentrum

DLR fiir Luft- und Raumfahrt

Institut fir
Vernetzte Energiesysteme

P—
et
B it
okt

anthe bsisof  decsion
byth German Bundestag





_images/combined_heat_and_power_plants.png
KWK

® Biomasse

® QGas

® Andere

50 100 km

0





_images/ding0_mv_lv_grid.png
1 MS-Netzgebiet
Urbanes Gebiet
Landliches Gebiet
HS/MS-Umspannstation
MS/NS-Netzstation
MS-Last

Kabelverteiler
Generator
Trennstelle

1 NS-Netzgebiet
[ Gebaude

@ MS/NS-Netzstation
e NS-Last

Kabelverteiler






_images/district_heating_areas.png
50

100 km

STk

e

o

B Fernwirmenetze

0 25 Skm

P

Hlntergrund Versorgungsberemhe Fernwdrme, Berlln






nav.xhtml

    
      Table of Contents


      
        		
          Contents
        


        		
          About eGon-data
          
            		
              Project background
            


            		
              Objectives of the project
            


            		
              Project consortium and funding
            


            		
              eGon-data as one element of the eGo-Toolchain
            


            		
              Modeling concept and scenarios
              
                		
                  System boundaries and general assumptions
                


                		
                  Scenarios
                


              


            


          


        


        		
          Workflow
          
            		
              Workflow management
            


            		
              Execution
            


            		
              Versioning
            


          


        


        		
          Getting Started
          
            		
              Pre-requisites
            


            		
              Installation
            


            		
              Run the workflow
              
                		
                  Test mode
                


              


            


          


        


        		
          Troubleshooting
          
            		
              Installation Errors
              
                		
                  importlib_metadata.PackageNotFoundError: No package metadata ...
                


              


            


            		
              Runtime Errors
              
                		
                  ERROR: Couldn't connect to Docker daemon ...
                


                		
                  [ERROR] Connection in use ...
                


                		
                  [ERROR] Cannot create container for service egon-data-local-database ...
                


                		
                  Working with multiple instances of egon-data
                


              


            


            		
              Other import or incompatible package version errors
            


          


        


        		
          Data
          
            		
              Main input data and their processing
              
                		
                  Data bundle
                


                		
                  Marktstammdatenregister
                


                		
                  OpenStreetMap
                


              


            


            		
              Grid models
              
                		
                  Electricity grid
                


                		
                  Gas grid
                


              


            


            		
              Demand
              
                		
                  Electricity
                


                		
                  Heat
                


                		
                  Gas
                


                		
                  Mobility
                


              


            


            		
              Supply
              
                		
                  Electricity
                


                		
                  Heat
                


                		
                  Gas
                


              


            


            		
              Flexibility options
              
                		
                  Demand-Side Management
                


                		
                  Dynamic line rating
                


                		
                  E-Mobility
                


                		
                  Battery stores
                


                		
                  Gas stores
                


                		
                  Hydrogen stores
                


                		
                  Methane stores
                


                		
                  Heat stores
                


              


            


            		
              Published data
            


          


        


        		
          Literature
        


        		
          Contributing
          
            		
              Bug reports and feature requests
            


            		
              Contribution guidelines
              
                		
                  Development
                


                		
                  Code and Commit Style
                


                		
                  Pull Request Guidelines
                


                		
                  What needs to be reviewed?
                


              


            


            		
              Extending the data workflow
              
                		
                  How to add Python scripts
                


                		
                  Where to save (downloaded) data?
                


                		
                  Add metadata
                


                		
                  Adjusting test mode data
                


              


            


            		
              Documentation
              
                		
                  How to document Python scripts
                


                		
                  How to document SQL scripts
                


                		
                  Tips
                


              


            


          


        


        		
          Authors
        


        		
          Changelog
          
            		
              Unreleased
              
                		
                  Added
                


                		
                  Changed
                


                		
                  Bug Fixes
                


              


            


          


        


        		
          API Reference: egon.data
          
            		
              airflow
            


            		
              cli
            


            		
              config
            


            		
              dataset_configuration
            


            		
              datasets
              
                		
                  DSM_cts_ind
                


                		
                  calculate_dlr
                


                		
                  ch4_prod
                


                		
                  ch4_storages
                


                		
                  chp_etrago
                


                		
                  database
                


                		
                  electrical_neighbours
                


                		
                  electricity_demand_etrago
                


                		
                  era5
                


                		
                  etrago_helpers
                


                		
                  etrago_setup
                


                		
                  fill_etrago_gen
                


                		
                  fix_ehv_subnetworks
                


                		
                  gas_areas
                


                		
                  gas_grid
                


                		
                  generate_voronoi
                


                		
                  heat_demand_europe
                


                		
                  industrial_gas_demand
                


                		
                  mastr
                


                		
                  mv_grid_districts
                


                		
                  renewable_feedin
                


                		
                  sanity_checks
                


                		
                  scenario_capacities
                


                		
                  society_prognosis
                


                		
                  substation_voronoi
                


                		
                  tyndp
                


                		
                  vg250_mv_grid_districts
                


                		
                  zensus_mv_grid_districts
                


                		
                  zensus_vg250
                


                		
                  chp
                


                		
                  data_bundle
                


                		
                  demandregio
                


                		
                  district_heating_areas
                


                		
                  electricity_demand
                


                		
                  electricity_demand_timeseries
                


                		
                  gas_neighbours
                


                		
                  heat_demand
                


                		
                  heat_demand_timeseries
                


                		
                  heat_etrago
                


                		
                  heat_supply
                


                		
                  hydrogen_etrago
                


                		
                  industrial_sites
                


                		
                  industry
                


                		
                  loadarea
                


                		
                  low_flex_scenario
                


                		
                  osm
                


                		
                  osm_buildings_streets
                


                		
                  osmtgmod
                


                		
                  power_etrago
                


                		
                  power_plants
                


                		
                  pypsaeursec
                


                		
                  re_potential_areas
                


                		
                  saltcavern
                


                		
                  scenario_parameters
                


                		
                  storages
                


                		
                  storages_etrago
                


                		
                  substation
                


                		
                  vg250
                


                		
                  zensus
                


              


            


            		
              db
            


            		
              metadata
            


            		
              subprocess
            


          


        


      


    
  

_images/residential_heat_demand.png
Warmebedarf p
N o0-112
B 112-311
B 311-681
Il 6381-3698

0 50 100km '
, I





_images/residential_heat_demand_profile_summer.png
9]
—
[«D]
@]
9]
o0 =~
.mm@
=
=528
o
BZMS
LM
—
o
—
L ————mm
LM

S o 2 2 2 2 <9 o9 o

co O~ © L < g N
Aep Pa129[as 10J purRUIap B3y
J0 98e1uadiad ATINOY

Hour of the day





_images/egon-modell-szenario-egon2035.png
Modell des Energiesystems: Szenario eGon2035 fen v

Dez. Warme
Ha

Erzeuger Netze Umwandlung Verbraucher

olar- & Geothermie

Warmespeicher

- Wind &PV 2izungen

Gewerbe

Gasturbine itungs-

N Industrie

1 Sonstige konv.
Kraftwerke monitoring

AN
AN IA

Stromnetz

H - Mobilitat esteuertes Laden
.

Batterien

H: Sal verne

rmierung und Tanks

e FOSSiles Gas

um mn]

Gas-Kavernen






_images/regions_DLR.png





_images/table_max_capacity_DLR.png





_static/ajax-loader.gif





_images/residential_heat_demand_profile_winter.png
10 — Building

— 20 Census cells
— MVGD
== SLLP

8

O < N

Aep Pa129[as 10J purRUIap B3y
J0 98e1uadiad ATINOY

Hour of the day





_images/shifted_dsm-example.png
2000

DSM potential in MW
TR
o o
o o
o o

01.01 03.01 05.01 07.01 09.01 11.01 13.01 15.01





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up.png





_static/up-pressed.png





